www.ec.gc.ca Lawrence.wilson@ec.gc.ca

The effect of improved marine wind forecasts on wave forecasts from WAM

Laurence J. Wilson Otilia Diaconu Sept. 29, 2006

Meteorological Research Division

Environment Environnement Canada Canada

Outline

- MOS Marine wind forecasts
- Converting MOS winds to WAM grid
- Gridded wind verification for L. Erie
- Case example of WAM run with MOS winds
- Conclusions and next steps

MOS marine wind equations

- Model Output Statistics (MOS)
 - Accounts for biases in model forecasts
 - Relates forecast directly to buoy obs
- Predictand: U, V, and scalar speed
- Predictors: winds and others from GEM regional
- All buoys on east, west coast and Great Lakes
- Equations valid for buoy level worked best
- Dependent sample 3 years; 2 years indep.
- Separate equations for each buoy, each forecast projection 0-48 h.
- Results:

10/3/2006

Buoy locations – East coast

FREQUENCY OF PREDICTORS SELECTED

PARAMETER wnm6s RUN 00 V_05

WIND SPEED

FREQUENCY OF PREDICTORS SELECTED

PARAMETER wnm6u RUN 00 V_05

U component

FREQUENCY OF PREDICTORS SELECTED

PARAMETER wnm6v RUN 00 V_05

V component

UMOS-A versus RGEM - standard level

WMO TRANSFORMATION

Mean Algebric Error - BIAS

All buoys

Mean Absolute Error - MAE

Time lag (h)

Reduction of Variance - RV

UMOS-A versus RGEM - standard level

WMO TRANSFORMATION

Mean Algebric Error - BIAS

Lakes – all buoys

Mean Absolute Error - MAE

Reduction of Variance - RV

Conversion to WAM grid – L. Erie

Apply equations for all 4 buoys at each gridpt
> 4 estimates of speed, U,V at each point
final estimate is weighted avg of 4 estimates
weights are inverse distance squared.

Results of WAM for L. Erie

- Winds verified over 3 months
- Preliminary 5 day run of WAM
 - Case example

Environment Environnement Canada

Bias and RMSE, MOS vs GEM, 3 months

Canadä

Case - 24 h forecast, 00 Aug 26, 06

24 h Forecast Wind Speed – 00 Aug 26, 06

Wind/wave timeseries – buoy 45005

Wind/wave timeseries – buoy 45132

Conclusions and next steps

- Conclusions:
 - Significant differences sometimes in waves from MOS compared to model
 - Improved winds not necessarily lead to improved waves
- Next steps:
 - Complete tests of WAM with MOS winds for E and W coasts

Page 18

Assessment on sufficiently large dataset

10/3/2006 Environment Environnement Canada Canada

10/3/2006

www.ec.gc.ca

Canada

