Detection of Human Influence on Trends of North Atlantic Ocean Wave Heights and Atmospheric Storminess

> Xiaolan L. Wang, Val R. Swail, Xuebin Zhang, Francis W. Zwiers

Climate Research Division, Environment Canada

Myles Allen Department of Physics, University of Oxford

Outline

Data sets
Methodology
Results
Concluding remarks

Data sets

- - P_t anomalies of seasonal mean SLP

 G_t – seasonal anomalies of squared SLP gradients (geostraphic wind energy)

"observed"

atmosphere

- P_t and $G_t \leftarrow$ SLP of ERA40 reanalysis for 1958-2001
- P_t and $G_t \leftarrow$ SLP of NCEP/NCAR reanalysis for 1958-2001 (anomalies relative to the 1961-1990 climate)
- Simulated P_t and $G_t \leftarrow 9$ ensembles of integrations of human-induced

climate change (45 in total)

Table 1.The nine coupled ocean-atmosphere models used
in this study and the number of integrations (runs)
conducted with each of these models.

Model	Number of runs
ECHO-G	5
GFDL CM2.0	3
GFDL CM2.1	3
GISS Model E H	5
GISS Model E R	9
MIROC 2 medres	3
MRI CGCM2 3 2a	5
NCAR CCSM 3	8
NCAR PCM 1	4
	Total: 45

Period of integration: 1900-1999 (used: 1900-1941 + 1958-1999: 2x42 yr.)

All with historical greenhouse gases and sulphate aerosols forcing

Obtained from the IPCC AR4 models output archive

Methodology

• Wave height not directly available \rightarrow Statistical simulations of SWH:

Parameters $\hat{a}, \hat{b}, \hat{c}, \hat{\sigma}, \hat{\xi} \in \text{ERA40 SWH}, P_t \text{ and } G_t (de-trended)$ Climate model simulations \rightarrow corresponding Seasonal means \hat{H}_{avg} $\hat{H}_t = \hat{a} + \hat{b}P_t + \hat{c}G_t$ SWH change $GEV(\hat{\mu}_t = \hat{a} + \hat{b}\hat{P}_t + \hat{c}\hat{G}_t, \hat{\sigma}, \hat{\xi})$ Seasonal 20-yr return values \hat{H}_{20y} Wave height not directly available from NNR \rightarrow NNR, ERA40 \rightarrow hindcasts <u>Linear trend patterns</u> of $P_t, G_t, H_{avg}, H_{20y}, \hat{H}_{avg}, \hat{H}_{20y} : T_o, T_m$ Multi-model mean "Observed"/hindcast (1958-1999)<u>Optimal detection approach</u> (TLS fit): $T_o = \beta(T_m - \varsigma) + \eta$ Simulated Observed If scaling factor $\beta > 0$ significantly, response to anthropogenic forcing is detected /nternal variability $\eta \sim \zeta$ consistent? using simulations for 1900-41

Trend patterns of seasonal mean SLP anomalies P_t

Trend patterns of seasonal mean SWH Have

Concluding remarks

In the cold seasons:

• The observed trend patterns of SWH and storminess:

1 in high-latitudes, J to the south

Concluding remarks

In the cold seasons:

• The observed trend patterns of SWH and storminess:

in high-latitudes, J to the south

- Anthropogenic forcing has had a detectable influence on the trends (all observed datasets used)
- The climate models significantly underestimate the magnitude of the response to anthropogenic forcing
- The climate models also underestimate the observed internal variability in fall (→ conservative detection conclusions)

Acknowledgement

The authors are grateful to Mr. Yang Feng for his great computing support, and to Dr. Jiafeng Wang for his help in compiling the climate model outputs

- The End -

Thank you very much!