Eugen Rusu Liliana Rusu Carlos Guedes Soares

NSTITUTO

SUPERIOR TÉCNICO INSTITUTO SUPERIOR TÉCNICO LISBON. PORTUGAL

OBIERIES To evaluate SWAN as a generation model in the Black Sea To develop a flexible wave prediction system able to focus rapidly on local areas

Topex/Poseidon data – variation of the sea level in Mediteraneean and Black Seas 1993-2000

Topex/Poseidon data – variation of the sea level in Mediteraneean and Black Seas 1993-2000

Topex/Poseidon data – variation of the sea level in Mediteraneean and Black Seas 1993-2000

2. Options for deep water wave modeling in SWAN The main physical processes in deep water $S_{total} = S_{in} + S_{dis} + S_{nl}$ Atmospheric input $S_{in}(\sigma,\theta) = A + BE(\sigma,\theta)$

A - linear growth; BE exponential growth
A (default 0.0015)
2 expressions for the coefficient B: Komen and Janssen

\widetilde{S}_{PM} overall wave steepness for Fierson-Moskowitz spectrum (= $(3.02 \times 10^{-3})^{1/2}$). exponent p=4

Komen - *Cds* (default 2.36 ×10-5). δ=0

Pulse-based model - whitecapping $S_{ds,w}(\sigma,\theta) = -\Gamma \tilde{\sigma} \frac{k}{\tilde{k}} E(\sigma,\theta)$ $\Gamma = \Gamma_{KJ} = C_{ds} \left((1-\delta) + \delta \frac{k}{\tilde{k}} \right) \left(\frac{\tilde{S}}{\tilde{S}} \right)^{p}$

overall wave steepness for Pierson-Moskowitz P_{PM} spectrum (= (3.02×10⁻³)^{1/2}). exponent p=4

Komen - Cds (default 2.36 × 10-5). $\delta = 0$

Janssen $C_{ds1} = C_{ds} \left(\frac{1}{\tilde{S}_{PM}} \right)$ **(default 4.5) (default 0.5)**

Cumulative Steepness Method (40.20) $S_{wc}^{st}(\sigma,\theta) = -C_{wc}^{st}S_{st}(\sigma,\theta)E(\sigma,\theta)$ $S_{st}(\sigma,\theta) = \int_{0}^{\sigma} \int_{0}^{2\pi} k^{2} |\cos(\theta - \theta')|^{m} E(\sigma,\theta) d\sigma d\theta$ C_{wc}^{st} (default 0.5 - 40.41) m (default 2) 40.51 - Saturation-based model of Alves and Banner (2003). more appropriate for mixed sea-swell conditions and in shallow water. Quadruplet interactions Transfer wave energy from the spectral peak both to lower and to higher frequencies 9 - parameterizations

Wave statistics for SWAN (1996.11.01h00-1997.02.06h00)

Wave statistics for WAM (Valchev et al., 2004)

n=660	X _{med}	Y _{med}	Bias	RMSE	SI	r	
Hs(m)	1.005	1.013	-0.008	0.386	0.384	0.871	
			0.270	0.530	0.680	0.730	K
Tp (s)	5.62	5.25	0.369	1.42	0.253	0.651	0
			0.430	1.74	0.340	0.550	Μ
Dir (°)	216.1	207.5	8.58	53.5	0.25	0.47	
			33.10	92.7	0.46	0.36	
Hs (m)	1.005	1.026	-0.022	0.432	0.430	0.837	J
Tp (s)	5.62	5.52	0.1	1.516	0.270	0.562	Ν
Dir (°)	216.1	224.5	-8.4	68.1	0.315	0.33	S
Hs (m)	1.005	1.104	-0.099	0.407	0.405	0.865	С
Tp (s)	5.62	5.82	-0.197	1.43	0.255	0.629	S
Dir (°)	216.1	222.0	-5.83	66.65	0.308	0.403	Μ

Study on the influence of DIA-based computations for the quadruplets Period: 1997.01.01 (day 62) – 1997.02.06

PIV. 3.2 GHz. 1024 RAM

n=272	Xmed	Ymed	Bias	RMSE	SI	r	Case	Time
Hs (m)	1.089	1.081	0.008	0.316	0.290	0.921		
Tp (s)	5.87	5.40	0.467	1.375	0.234	0.72	Q1	21h09min
Dir (°)	229.9	209.6	20.36	51.657	0.225	0.58		1.53U
Hs (m)	1.089	1.117	-0.028	0.321	0.294	0.919		
Tp (s)	5.87	5.27	0.604	1.429	0.243	0.723	Q2	13h50min
Dir (°)	229.9	207.3	22.643	51.344	0.223	0.602		U
Hs (m)	1.089	1.118	-0.029	0.321	0.295	0.919		
Tp (s)	5.87	5.29	0.576	1.408	0.240	0.726	Q 3	15h31min
Dir (°)	229.9	207.3	22.643	51.344	0.223	0.602		1.12U
Hs (m)	1.089	0.969	0.12	0.335	0.308	0.923		
Tp (s)	5.87	4.9	0.973	1.683	0.287	0.708	Q 8	14h45min
Dir (°)	229.9	204.6	25.3	51.07	0.222	0.578		1.07U

DIA per sweep

DIA per iteration

□ Q1- semi-implicit computation

Q2- fully explicit computation (default)

Q3- fully explicit computation

Q8- as **Q3** but neighbouring interactions are interpolated

Study on the influence of DIA-based computations for the quadruplets Period: 1997.01.01 (day 62) – 1997.02.06

PIV. 3.2 GHz. 1024 RAM

n=272	Xmed	Ymed	Bias	RMSE	SI	r	Case	Time
Hs (m)	1.089	1.081	0.008	0.316	0.290	0.921		
Tp (s)	5.87	5.40	0.467	1.375	0.234	0.72	Q1	21h09min
Dir (°)	229.9	209.6	20.36	51.657	0.225	0.58		1.53U
Hs (m)	1.089	1.117	-0.028	0.321	0.294	0.919		
Tp (s)	5.87	5.27	0.604	1.429	0.243	0.723	Q2	13h50min
Dir (°)	229.9	207.3	22.643	51.344	0.223	0.602		U
Hs (m)	1.089	1.118	-0.029	0.321	0.295	0.919		
Tp (s)	5.87	5.29	0.576	1.408	0.240	0.726	Q3	16h19min
Dir (°)	229.9	207.3	22.643	51.344	0.223	0.602		1.18U
Hs (m)	1.089	0.969	0.12	0.335	0.308	0.923		
Tp (s)	5.87	4.9	0.973	1.683	0.287	0.708	Q8	14h45min
Dir (°)	229.9	204.6	25.3	51.07	0.222	0.578		1.07U

Q4- multiple DIA – 38h12min = 2.76U

Direct comparison for wind velocity: GLORIA (measured) - NCEP – ECMRWF. day 1 – 2002/01/01. day 211 – 2002/07/31

Direct comparison for wind velocity: GLORIA (measured) - NCEP – ECMRWF. day 1 – 2002/01/01. day 211 – 2002/07/31

Direct comparison for Hs: GLORIA (measured) - NCEP - ECMRWF. day 1 - 2002/01/01. day 211 - 2002/07/31

Wave statistics (2002.01.01-2002.07.31)

n=781	X _{med}	Y _{med}	Bias	RMSE	SI	r	Wind field
Hs (m)	1.535	1.551	-0.016	0.762	0.496	0.709	
Tm (s)	5.08	2.738	2.342	2.664	0.524	0.218	NCEP
Dir (°)	215.03	140.978	74.05	81.08	0.377	0.401	
Hs (m)	1.535	0.937	0.539	0.937	0.610	0.683	
Tm (s)	5.08	2.349	2.731	2.972	0.585	0.300	ECMRWF
Dir (°)	215.03	133.62	81.407	87.133	0.405	0.341	

6. The BLACK SWAN wave prediction system A single model covers the full scale A MATLAB toolbox Data processing **Comprehensive visualisations**

Typical storm

2002/03/10_h18

2002/03/12_h18

Nearshore focusing

Level I – wave generation

Level I – wave generation

2002/03/11_h18 Level II – coastal transformation

Level III – local focusing

Level IV – Cartesian HR

Level IV – Cartesian HR

7. Final considerations SWAN seems to be an adequate model for closed seas of medium size as Black Sea (or Caspian Sea) One single model can cover the full scale of wave modeling The validation of the Black SWAN wave prediction system will continue at various levels Further studies will be focused more on storm events