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Why did we switch from 2nd Generation spectral models
to 3rd Generation spectral models?

To allow detailed balance calculations of source terms
in order to be able to treat complex situations.

The nonlinear interaction source term is critical to this
balance.

If this term is incorrect, all the others must be tuned to
compensate.   This is not physics --- this is tuning.

Objective of this paper

Examine the accuracy of the DIA and its relationship 
to the full integral.

Introduce a new approximation method for nonlinear
interaction source term with improved accuracy, while
retaining “similar” computational efficiency



Coastal wave spectra are very complex!Coastal wave spectra can be very complex and contain directional shear!
As can wave spectra in hurricanes/turning winds/slanting fetch/limited fetch



Even “simple” spectra can have relatively complex shapes!



Analyses
From Long
And Resio
2006 JGR
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General 4-wave interaction integral for rate of change of action density at k1
Involves action densities at 4 wavenumbers, the coupling coefficient (C) which is also a
function of the wavenumbers, and a Jacobian tranform for moving from k to (s,n) space

The integral for 4-wave interactions can be written as an integral of the 
transfers from one wavenumber into another, where 2 other wave numbers
are free to assumed continuous values along loci determined by the resonant
conditions:

Where s is determined
from W=0 solution
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DIA
Represents subset of points for which two wavenumbers are (close to) equal.  
Essentially gives the interactions along Phillips’ “figure-8” curve.

How are these two sets of interactions related?
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K1 – K3

S

Note: Resonant curve
does not extend to
entire interaction domain

Line of resonance within S – ( K1 – K3) space

There is one point along each s-locus for which k2=k1, up to the limit
of the maximum k3 value in the Figure 8 resonance pattern. The Full
Integral considers contributions over the 2-dimensions above.  The DIA
only samples along the line.



Full integral estimate for tranfers
into and out of a location near the

spectral peak (Webb, 1978)

.  Transfers are very comparable
to the results of Longuet-Higgins 
and Fox (1975) based on Davey
and Stewartson (1974) work on
a 3-dimensional wave packet
instability.  Note asymptotic angles
of transfer maxima at

1arctan asymptote of "Figure 8" pattern
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Important Note: This pattern
is not symmetric around k0.



Calibrated to “match” here

Creates a mis-match here

And here

DIA is parametrically calibrated
to match only a single quantity –
the total energy transferred to the
forward face of the spectrum.
but:



Full integral estimate for transfers
into and out of a location removed
from the spectral peak - Not a “Figure 8”
Pattern.  Webb (1978)

1 3Contours of ( , )T k k

In some parts of the spectrum, the
transfer geometry is not at all similar
to a “figure 8” pattern



What happens if you violate this limit?

( , ) ( ) ( , )
5.5 5( ) 1 (1 )exp( 1.25 )

6
3
4

nlS f R kh S f
xR kh x

x
khx

θ θ∞=

= + − −

=

Plot of depth at which
kph = 1

The DIA uses a parametric
methods to adjust the
deep water transfer rates
to shallow-water transfer
rates – Herterich &
Hasselmann (1980).



Comparison of a DIA calculation and an actual full-integral, finite-depth
calculation for the case of kph=0.7 (JONSWAP spectrum with a peak period 
of 10 seconds in depth of 10.5 meters).

Full integral

DIA

The DIA severely underestimates the
fluxes to high frequency and the TMA
type of shape adjustment is totally missed.



Since the DIA only samples a slice from
the complete integral, and is tuned to
fit a specific spectrum, how well does it
work for a range of peakedness typical
of wave generation conditions?



Standard JONSWAP
γ = 3.3

Standard JONSWAP
γ = 1.0

Standard JONSWAP
γ = 7.0

DIA performance for JONSWAP
spectra with selected peakedness
values.  Solid line is full integral.
Dashed line is DIA. This does not
provide a consistent amount of energy
to forward face of spectrum.

DIA

Full Integral



The ratio of the maximum value within the positive lobe predicted 
by the DIA to the maximum value predicted by the full integral, 
as a function of JONSWAP spectral peakedness parameter, γ. 

As the spectrum approaches full development
the DIA progressively overpredicts the amount
of energy transferred to the forward face of the
spectrum – requiring other terms in the detailed
balance to try to compensate for this transfer.



Same as previous figure, defining a ratio for the largest negative
values within the negative lobe, as a function of JONSWAP spectral 
peakedness parameter, γ. 



Problem with DIA – The basis is not the integral that we are
trying to estimate.

We need a new approximation that;

• conserves constants of motion (action, energy, momentum)
• has its basis in the correct integral (important for complex cases)
• retains the number of degrees of freedom in the modeled spectrum
• is not limited to kph ≥ 1
• is much more efficient than the full integral
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Contains both L and X terms

Basis for Two-Scale Approximation

Line 1 contains interactions for only B
Line 2 contains interactions for only L
Lines 3-8 contain cross-interactions between B and L
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Scale 1 Terms

Retained Terms from L+X

Neglected Terms from L+X

This approximation to the full integral would be exact if
all terms were retained.
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Note: X is typically 2-3 times larger than L or B.  This
is why linear sums (neural networks, EOF’s, etc.) do not 
work well for Snl estimation.

2 4neglected  and  termsn n′ ′

The fundamental idea here is to capture the broad-scale distribution of energy 
parametrically and to allow “local” differences to be treated as shown below. Terms
that are neglected tend to contribute in a +/- sense around s.

This could be a DIA form or a
diffusion operator, but we would
lose considerable accuracy.
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Note:  These terms are
pre-calculated.  This
removes all calculations
from innermost loop
in the integration.
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∂ ∑∑ r r All coefficients are determined
From pre-calculated integrals

Note:  This has no free parameters.
All coefficients are determined from
the full integral. Still conserves action,
energy, and momentum since each
elemental transfer is conservative.

Note: computer time is about 3x that
of DIA



Approximation 
used here is a 
simple 
parameterization 
of B based on:

1 dof only
(Peakedness)

Normalized 
spectra
stratified by 
inverse
wave age based
on data from 
Currituck Sound
Bering Sea
Atlantic Ocean

Note f-5 region in all spectral groups



Performance of TSA for
JONSWAP spectra with 
selected peakednesses
Solid – full integral
Dot-dash – B-scale alone
Dashed - TSA

γ=3.3 γ=1

γ=7



JONSWAP with negative
Gaussian perturbation

JONSWAP with positive
Gaussian perturbation

JONSWAP with negative
Gaussian perturbation

JONSWAP with 40-degree
angle shift

Performance of TSA for more
complicated spectra
Same line patterns as previous



Comparison of TSA (dashed) and DIA (dot-dash) to full integral (solid)
for finite-depth case  (kph = 0.7).



Example of actual spectrum with crude parameterization.
In this case, the spectral shape is highly variable in terms of its
angular distribution and the peak shape is not well approximated.



Comparison of the L+X contributions to the equivalent 
contributions in the full integral provides a good measure of
the effectiveness of the second-scale introduction in the TSA



The TSA

• conserves constants of motion (action, energy, momentum)
• has its basis in the correct integral (important for complex cases)
• retains the number of degrees of freedom as the modeled spectrum
• is not limited to kph ≥ 1

AND

• is much more efficient than the full integral

Number of mathematical operations is 

about 3xDIA for 1 quadraplet (about 1.5 if two sets of q’s are used)
BUT: DIA’s instability makes it unstable for moderate time steps!

about 1/250 of the time of the Full Integral



CONCLUSIONS

• DIA has extreme difficulty in reproducing Snl since it does not represent 
the full set of 4-wave interactions.

• Although DIA is calibrated to provide similar energy transfer to the
Low-frequency region of the spectrum, the calibration is only 
locally valid (near γ=3.3).

• The parametric extension of the DIA to shallow water does not
capture essential elements of nonlinear energy fluxes and their 
effects on spectral shape in coastal waters

• The TSA appears to be a more accurate alternative to the DIA for
both deep water and shallow water cases

• The initial TSA can be extended to improve the B-scale treatment 
which should improve its accuracy for operational applications.


