### Leonid Lopatoukhin, Alexander Boukhanovsky

## EXTREME AND FREAK WAVES (The Difference and Similarity)

State University (dep. Oceanology), leonid-lop@yandex.ru, State University of Information Technologies., avb-mail@mail.ru



# EXTREME WAVES

Extremes at a point
Extremes at a field
Multivariate extremes

#### **MAIN APPROACHES to METOCEAN EXTREME ANALYSES**



IDM: the type of initial distribution in a tail is unknown.

AMS: the type of the tail is known, but the sample is small.

POT: the type of the distributions of both intensity and number of maxima are known only for limit case (high level ~ small sample)

MENU: the type of initial distribution is unknown

#### How to compute the extremes at a point?



#### **Extremes at the point: BOLIVAR approach**



Multivariate quantile function of consequent annual maxima HS. Barents Sea

#### **Ranking procedure of extremes**

$$\begin{split} (h_{11}^{+} \geq h_{12}^{+} \geq \ldots \geq h_{1k}^{+}) \\ (h_{21}^{+} \geq h_{22}^{+} \geq \ldots \geq h_{2k}^{+}) \\ \cdots \\ (h_{n1}^{+} \geq h_{n2}^{+} \geq \ldots \geq h_{nk}^{+}) \end{split}$$

where n is the number of n–th consequent maxima in a year, k is the number of the year.

Approximation of multivariate quantile function

$$F(x_1,...,x_k) = \sum_{k=1}^{\infty} p_k G(x_1,...,x_k)$$

Estimation of quantile function – by means of multiscale stochastic modeling

#### THE STEPS OF MODELING & SIMULATION



#### **Essence of BOLIVAR procedure**

#### From storms and calms – to events once T years



#### **ADVANTAGES**

- 1. The annual and year-to-year variability is taking into account.
- 2. Sample size for model identification is not small (40-70T, where T is the length of initial data series).
- **3.** The limit (analytical) "control points" for (h,T,Θ) distributions are available.
- 4. The definition of "event once T years" is natural (from the annual maxima).
- 5. The secondary maxima are in consideration.

WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (OF UNESCO)

# ESTIMATION OF EXTREME WIND WAVE HEIGHTS

by L.J. Lopatoukhin, V.A. Rozhkov, V.E. Ryabinin, V.R. Swail, A.V. Boukhanovsky and A. B. Degtyarev

> WMO/TD-No. 1041 2000 JCOMM Technical Report No. 9

#### Multivariate metocean extremes: problem of definition

**Univariate extremes** of process X(t) - **once T years**: ~ with probability p(T)



#### **Uncertainty in interpretation of joint extremes of (X,Y)**

- Expected value of Y, associated with extreme of X , possible once T years
- Expected value of X, associated with extreme of Y , possible once T years
- Joint occurrence of combinations (X,Y), possible once T years

#### Joint (bivariate) extremes of metocean processes



#### How to estimate the joint extremes of metocean processes



### **Definitions of two-dimensional extremes:** 1) Composition of one-dimensional (marginal) extremes



# **Definitions of two-dimensional extremes:** 2) Values, associated to marginal extremes



# **Definitions of two-dimensional extremes:** 3) Contours of equal probability

![](_page_15_Figure_1.jpeg)

### **Definitions of two-dimensional extremes:** 4) Contours of equal rarity

![](_page_16_Figure_1.jpeg)

### Difference between equal probability and the equal rarity (FORM, SORM)

![](_page_17_Figure_1.jpeg)

### Choice of the point in a diagram (equal probability, equal rarity)

![](_page_18_Figure_1.jpeg)

#### Joint Extremes of Metocean Events: differences in definitions

Definitions of joint 10-years extremes of WS and HS in the North Sea

![](_page_19_Figure_2.jpeg)

1 – "hat", 2,3 – regressions, 4 – probability contour, 5 – quadratic target function (for mooring objects)

#### Parameterization of dependencies between storm impulses and associated values

![](_page_20_Figure_1.jpeg)

Conditional Weibull-Lognormal distribution techniques

- (a) North Sea
- (b) Mediterranean Sea

(c) – Baltic Sea

Left – WIND, associated with the WAVE impulses

Right – WAVES, associated with wind impulses.

# **From individual events – to annual maxima:** how to define two-dimensional **annual** extremes

![](_page_21_Figure_1.jpeg)

#### Estimation of the conditional extreme occurrence (from storms and calms – to events once T-years)

![](_page_22_Figure_1.jpeg)

### Joint occurrence of wind and waves once T years in the Central part of North Sea

![](_page_23_Figure_1.jpeg)

Это – расчетный пример с цифрами (белыми) – означающими число целых лет, один раз в которые...

Здесь белый цвет – самый лучший (все остальные цвета еще хуже видно)

### Hindcast and forecast of sea waves

![](_page_24_Figure_1.jpeg)

## FREAK WAVES

#### EXTREME AND FREAK WAVES IN THE NE PART OF THE BLACK SEA

![](_page_26_Figure_1.jpeg)

#### Freak waves measurements in the Black Sea

![](_page_27_Figure_1.jpeg)

#### Directional waves spectra for the cases of freak waves measurements in the Black Sea

![](_page_28_Figure_1.jpeg)

## Wavelet (Black Sea, DEC.16.2000)

![](_page_29_Figure_1.jpeg)

#### **Freak Waves as Multivariate Extreme**

![](_page_30_Figure_1.jpeg)

#### Sequence of freak wave detection among other waves

![](_page_31_Figure_1.jpeg)

#### Statistical description of freak wave

![](_page_32_Figure_1.jpeg)

#### Probability of freak wave

![](_page_33_Figure_1.jpeg)

#### Probability of freak wave

![](_page_34_Figure_1.jpeg)

#### **PROBABILITY** of a FREAK WAVE

Three-dimensional distribution

# Prob { $(h/\bar{h})$ ≥3.8, (c/h) ≥0.65, $\delta \ge 0.5$ }= $6 \cdot 10^{-7}$

i.e. one wave from 1700000 waves will be freak (by these parameters).

This is lower border of freak wave probability.

## Asymmetry A, kurtosis E and freak waves

![](_page_36_Figure_1.jpeg)

#### External factors, increasing the probability of freak wave

![](_page_37_Figure_1.jpeg)

Combined distribution multiscale model

### System of warning

#### What factors are increase the probability of freaks?

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_0.jpeg)

### Probability of the spectral jumps

![](_page_40_Figure_1.jpeg)

## Relations to freaks: "jumps" of the spectra and observations of freak waves

## Dates and types of spectral jumps from the one class to another (in comparison with the wave measurements in the North Sea).

| Position     | Date       | Sequence of classes<br>(each 3 hours)     |
|--------------|------------|-------------------------------------------|
| North Alwyn  | 16.11.1993 | 1 <u>1 3</u> 3 <u>3 1</u> 1 1             |
| ۲۵           | 18.11.1993 | 1 1 1 <u>1 3</u> 3 <u>3 1</u>             |
| N. Cormorant | 04.01.1993 | <u>15531</u> 111                          |
| ٠٠           | 12.01.1993 | 3 3 3 <u>3 1</u> 1 1 1                    |
| ٠٠           | 18.01.1993 | <u><b>1</b></u> 3 3 3 <u>3</u> <u>1</u> 1 |
| ٠٠           | 12.03.1996 | 1111111                                   |
| Draupner     | 01.01.1995 | 1 1 <u>1 3 3 1</u> 1 1                    |

 'Wind and wave climate of Barents, Okhotsk and Caspian Seas". Handbook.
 Russian Register of Shipping Saint-Petersburg, 2003. 213pp.

# PART 1 (2003)

Background, including main approa

- Numerical models (short description)
- Short-term statistics:
- (wave heights, periods, lengths, crests distributions) frequency and directional spectra;
- Long-term statistics:
- Operational statistics: distributions, persistence, climatic spectra
- **Extreme statistics:**
- (based on WMO publication (www.wmo.ch JCOMM Publications)

Approach to wave heights with return period of 1000 and 10000 years.

# PART 2 (2003)

Reference data (monthly, detailed by region

#### Extreme statistics

- Extreme winds with return periods 1, 5, 10, 25, 50 and 100 years. (Omnidirectional and for 8 directions )
- Wave heights, periods, lengths (mean, significant, 3% 1%, 0.1%) and wave crests with return periods1, 5, 10, 25, 50 and 100 years

#### **Operational statistics**

- One-dimensional distributions (winds, waves)
- Persistence statistics (mean, rms, max) for wind and waves.
- Wave heights: Monthly storm and weather windows durations.
- Monthly probabilities of wave heights and direction.
- Joint probability of wave heights and periods

![](_page_45_Figure_0.jpeg)

СПРАВОЧНИК 2006 "Wind and wave climate of **Ballic, North, Black, Azov and** Mediterranean Seas" Handbook. **Russian Register of Shipping** Saint-Petersburg, 2006. 450pp.

www.rs-head.spb.ru

PART 1 (2006) As in 2003 edition, but with more details for: assimilation data in reananlysis; • persistence statistics; Climatic wave spectra; Freak waves (with example of the loss of ship "Aurelia" in February 2005)

# PART 2 (2006)

The same as in 2003 edition, but for the irst time in the World practice: Climatic wave spectra for every area

![](_page_48_Figure_2.jpeg)

## Loss of the ship "Aurelia" (02 Febr. 2005)

![](_page_49_Figure_1.jpeg)

## Possible usual (a) and unusual (freak 6) waves at the moment of loss of "Aurelia"

![](_page_50_Figure_1.jpeg)

## SUMMARY (about freaks)

- 1. In order become freak, wave have to obtain some features.
- 2. Freak wave is multidimensional extreme.
- 3. Arising of a freak connected both with nonlinear property of wave field and some external factors.
- 4. Statistical description of nonlinear wave properties is mixture of distribution.
- 5. All nonlinear processes and events have their own freaks.

![](_page_52_Picture_0.jpeg)