

9rd International Workshop On Wave Hindcasting and Forecasting

Victoria, B.C. 24-29 Sep 06

Lihwa Lin¹, Ray-Qing Lin², Jerome Maa³

¹ U.S. Army Engineer Research & Development Center Coastal & Hydraulics Laboratory

² U.S. Naval Surface Warfare Center, Division of Seakeeping

³ Virginia Institute of Marine Science

Outline

- 1. Numerical Model
- 2. Wind Input Function
- 3. Wave Dissipation
- 4. Case Studies
- 5. Summary and Conclusions

Governing Equation (Steady State, two-dimensional spectral model) – Wave-Action Balance Equation with Diffraction (WABED), Mase et al. 2001

$$\frac{\partial [(c_{gx} + u)A]}{\partial x} + \frac{\partial [(c_{gy} + v)A]}{\partial y} + \frac{\partial [c_{g\theta}A]}{\partial \theta} = \frac{\kappa}{2\sigma} \{(cc_{g}\cos^{2}\theta A_{y})_{y} - \frac{1}{2}cc_{g}\cos^{2}\theta A_{yy}\} + S_{in} + S_{dp}$$
where $A = E/\sigma$ is the wave-action spectrum and
 $E = E(\sigma, \theta)$ is the directional wave spectrum.

Here *x* is normal to seaward boundary, *y* is parallel to seaward boundary

2. Wind Input Function

$$S_{in} = \frac{a_1 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) E_{PM}^*(\sigma) \Phi(\theta) + \frac{a_2 \sigma}{g} F_1(\vec{w} - \vec{c}_g) F_2(\frac{c_g}{w}) F_3(\frac{c_g}{w}) F_3(\frac{c_g}{w})$$

$$F_{1}(\vec{w} - \vec{c}_{g}) = \begin{cases} w\cos(\theta_{wind} - \theta) - c_{g}(\sigma, \theta), & c_{g} < w \\ 0, & c_{g} \ge w \end{cases}$$

$$F_{2}(\frac{c_{g}}{w}) = \begin{cases} (\frac{c_{g}}{w})^{0.8}, & F_{3}(\frac{c_{g}}{w}) = \begin{cases} \log_{10}[(\frac{c_{g}}{w})^{-1}], & c_{g} < w \\ 0, & c_{g} \ge w \end{cases}$$

$$E_{PM}^{*}(\sigma) = \frac{g^{2}}{\sigma^{5}} \exp(-0.74 \frac{\sigma_{0}^{4}}{\sigma^{4}}), \ \sigma_{0} = g / w, \text{ and } \Phi(\theta) = \frac{8}{3\pi} \cos^{4}(\theta - \theta_{wind})$$

3. Wave Energy Dissipation

- White capping

where
$$S_{dp} = -C_{ds}(ak)^{1.5} \frac{\sigma}{g} c_g(\sigma, \theta) F_4(\vec{w}, \vec{u}_{current}, \vec{c}_g) F_5(kh) E$$

and $F_4(\vec{w}, \vec{u}_{current}, \vec{c}_g) = \left| \frac{\upsilon + w}{\vec{w} + \vec{u}_{current} + \vec{c}_g} \right|, \quad F_5(kh) = \frac{1}{\tanh kh}$

 $a = \sqrt{E(\sigma, \theta)} d\sigma d\theta$, wavelet calculated for each grid cell

- Breaking

Miche's and Goda's breaking limitations: $S_{dp} = -\varepsilon_b A$

- Bottom friction

$$S_{dp,fric} = -C_f \frac{\sigma}{g} \frac{\langle u_b \rangle}{\sinh^2 kh} E$$
, where $\langle u_b \rangle = \frac{1}{2} \sqrt{\frac{g}{h}} E_{total}$

Idealized Wind Wave Growth Wave Height Comparison

Idealized Wind Wave Growth Wave Period Comparison

4.1 Chesapeake Bay Wind and Wave Data Stations CHLV2, TPLM2, TSL

Model Domain and Calculated Wave Field under a Steady Northerly Wind at 15 m/sec

Measured and Model Directional Spectra Chesapeake Bay TSL Station 12:00 GMT, 27 February 1993

Steady wind Speed = 15 m/sec, wind direction = 0 deg (from north)

4.2 Wave Model Grid and Data Collection Stations Mouth of Columbia River (MCR), OR/WA

Wave and Wind Data Collected at Buoy 46029, Sta 4 and Sta 5 – Aug-Sep 05

MCR Wind/Wave Station Information

Station	Coordinates	Water depth (m)
1	46°16'16"N, 124°03'23"W	9.7
2	46°15'47"N, 124°03'29"W	12.9
3	46°15'27"N, 124°03'13"W	21.7
4	46°15'04"N, 124°03'46"W	14.2
5	46°14'24"N, 124°03'58"W	10.4
Buoy 46029	46°07'00"N, 124°30'36"W	128

Buoy and Model Seaward Boundary Spectra 00:00 GMT, 30 August, 2005

Buoy and Model Seaward Boundary Spectra 18:00 GMT, 9 September 2005

Wave Field Simulation – 10:00 GMT, 7 August Wave Input: 2 m, 8.3 sec, 300 deg

(a) With wind input: 7.7 m/sec and 344 deg

(b) Without wind input

Wave Field Simulation - 18:00 GMT, 9 September Wave Input: 4 m, 10 sec, 307 deg

(a) With wind input: 7.6 m/sec and 311 deg

(b) Without wind input

Measured and Calculated Directional Spectra MCR Sta 1 - 10:00 GMT, 7 August 2005

Measured and Calculated Directional Spectra MCR Sta 2 - 10:00 GMT, 7 August 2005

Measured and Calculated Directional Spectra MCR Sta 3 - 10:00 GMT, 7 August 2005

Measured and Calculated Directional Spectra MCR Sta 4 - 10:00 GMT, 7 August 2005

Measured and Calculated Directional Spectra MCR Sta 5 - 10:00 GMT, 7 August 2005

Measured and Calculated Directional Spectra MCR Sta 1 - 00:00 GMT, 30 August 2005

Measured and Calculated Directional Spectra MCR Sta 3 - 00:00 GMT, 30 August 2005

Measured and Calculated Directional Spectra MCR Sta 4 - 00:00 GMT, 30 August 2005

Measured and Calculated Directional Spectra MCR Sta 5 - 00:00 GMT, 30 August 2005

Measured and Calculated Directional Spectra MCR Sta 2 - 18:00 GMT, 9 September 2005

Measured and Calculated Directional Spectra MCR Sta 3 - 18:00 GMT, 9 September 2005

- 1. Wind input and wave energy dissipation functions developed from previous studies (Lin & Lin, 2004) were implemented in a directional spectral model to simulate wind wave fields at two sites.
- 2. The comparison of model results with data shows that the effect of non-linear wave-wave interactions is significant in shallow water.
- 3. The calculated wave growth is significant along the coast under a moderate wind as compared to model result without wind input.
- 4. The present model does not calculate the nonlinear wave-wave interaction. As a result, the model spectrum tends to skew toward higher frequencies and has a narrower directional distribution as compared to data. Future studies will describe the nonlinear wave energy transfer and comparison with additional data.

Grays Harbor, WA Incident Waves: 5 m, 18 sec, from NWW M2D/WABED Models

(b) With Strong Ebb Current

(a) Without Current