Shell Exploration & Production

Estimating extreme wave design criteria incorporating directionality

Kevin Ewans

Shell International Exploration and Production

Philip Jonathan

Shell Research Limited

Overview

- Motivation
- Data
- Directional extremal model
- Estimating omni-directional extremes
- Design criteria for directional extremes
- Conclusions

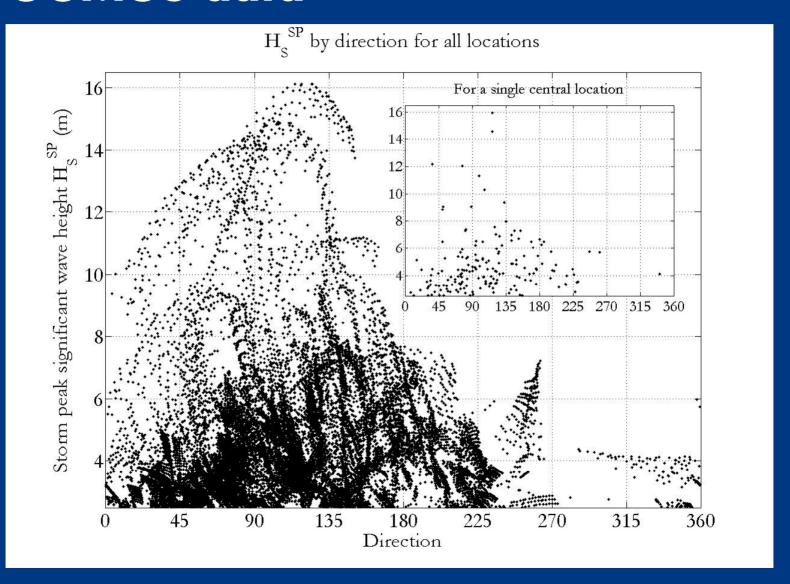
Motivation

- In most regions, but particularly hurricane-dominated regions (e.g. Gulf of Mexico), and in regions where extra-tropical storms prevail (e.g. Northern North Sea), the extremal properties of storms are also highly dependent on storm direction
- Sea state design criteria for offshore facilities are frequently provided by direction to optimise engineering factilities
- Important that these criteria be consistent so that the probability of exceedance of a given wave height from any direction derived from the directional values is the same as for the omni-directional value.
- No consensus on how the criteria should be specified

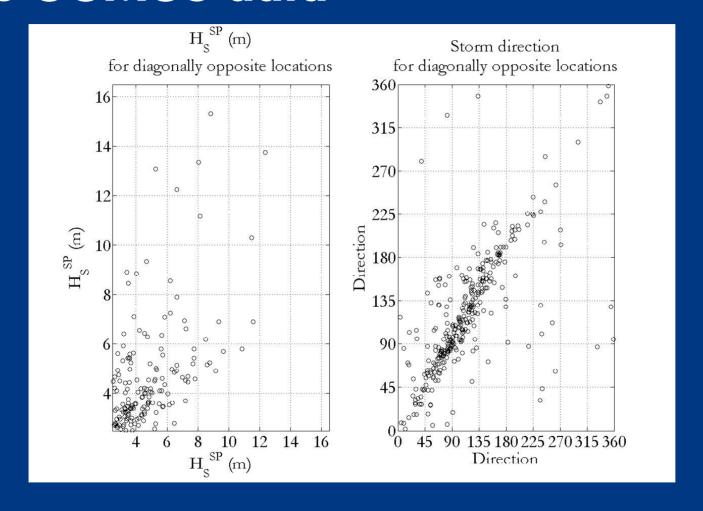
The GOMOS data

- H_s values from GOMOS Gulf of Mexico hindcast study (Oceanweather, 2005)
- September 1900 to September 2005 inclusive
- 30 minute sampling intervals
- 120 grid points on a 15 \times 12 rectangular lattice with spacing 0.125 (14 km)
- ullet For each storm period for each grid point, we isolated a storm peak significant wave height $H_s^{\it sp}$ and associated direction $heta_i$
- 315 storms per grid point

The GOMOS data



The GOMOS data



These locations are 250 km apart

The directional extremal model

CDF:
$$F_{X_i|\theta_i,u}\left(x\right) = P\left(X_i \le x \mid \theta_i,u\right) = 1 - \left(1 + \frac{\gamma\left(\theta_i\right)}{\sigma\left(\theta_i\right)}(x-u)\right)_{+}^{-\frac{1}{\gamma\left(\theta_i\right)}}$$

 $\gamma(heta_i)$ shape parameter or tail index

 $\sigma(heta_i)$ scale parameter u threshold

(assumed constant with direction)

Parameters characterised by Fourier series expansion (e.g. Robinson & Tawn, 1997)

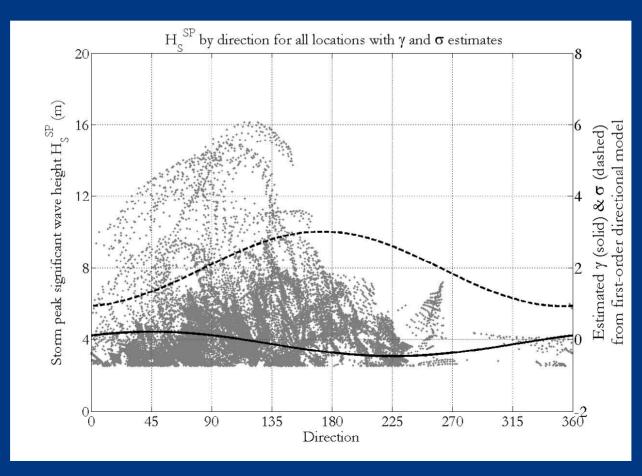
$$\gamma(\theta) = \sum_{k=0}^{p} \left[A_{11k} \left(\cos(k\theta) \right) + A_{12k} \left(\sin(k\theta) \right) \right]$$

$$\sigma(\theta) = \sum_{k=0}^{p} \left[A_{21k} \left(\cos(k\theta) \right) + A_{22k} \left(\sin(k\theta) \right) \right]$$

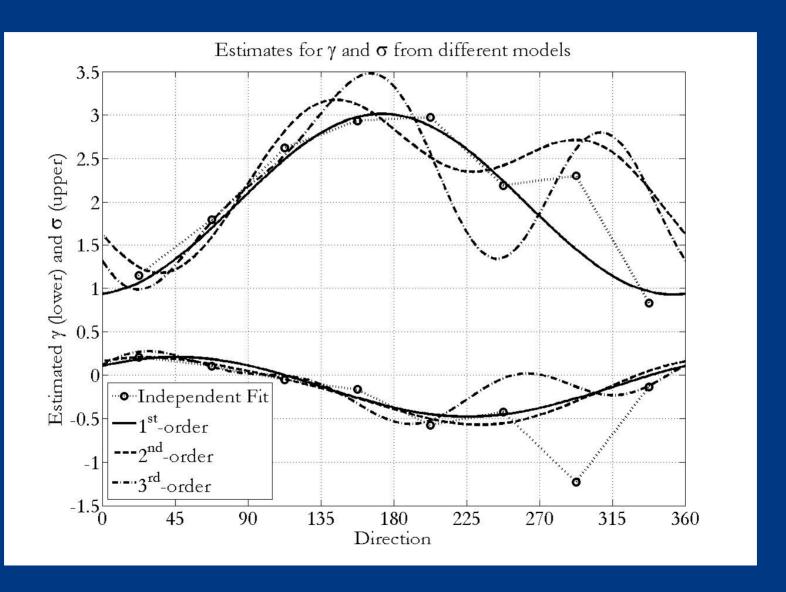
Parameters estimated by maximum likelihood

The GOMOS first-order directional model

$$\gamma = -0.13 + 0.24\cos(\theta) + 0.24\sin(\theta)$$
$$\sigma = 1.97 - 1.04\cos(\theta) + 0.14\sin(\theta)$$

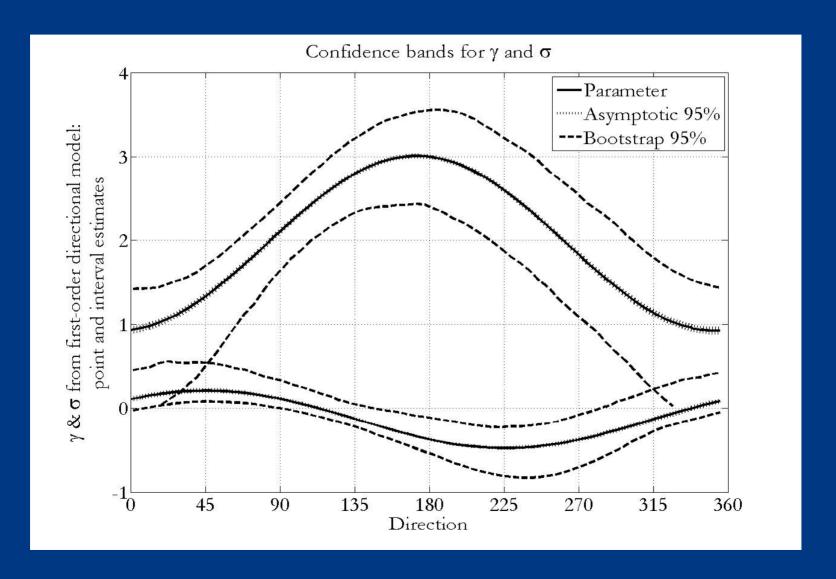


Comparison of higher order models



P04627_002 Sl.10

First-order model confidence bands

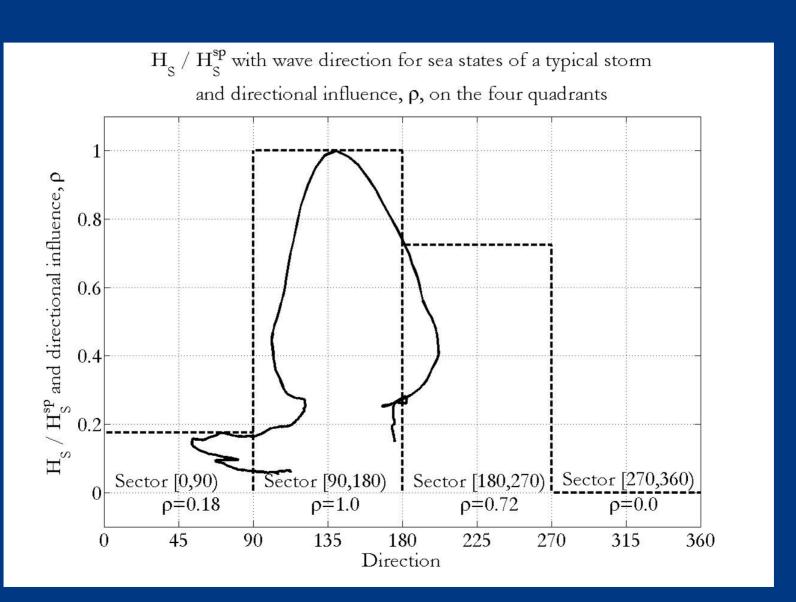


Estimation of omni-direction Extremes

Assume

- \bullet Given storm peak direction, θ_i , storm peak H_s above u follows GPD with parameters $\gamma(\theta_i)$ and $\sigma(\theta_i)$
- Storm occurrences are independent Poisson events with expectation $^{1}\!\!/P_{0}$ per annum per storm
- ullet Storm peak directions for any period P are restricted to $\{ heta_i^{i}\}_{i=1}^n$

Estimation of omni-direction extremes



Estimation of omni-direction extremes

Distribution of the maximum storm $H_{\rm s}$ within a given sector Sa given period P is given by:

$$F_{X \max S}(x) = P(X_{\max S} \le x \mid X_i > u \forall i, i \in [1, 2, ..., n])$$

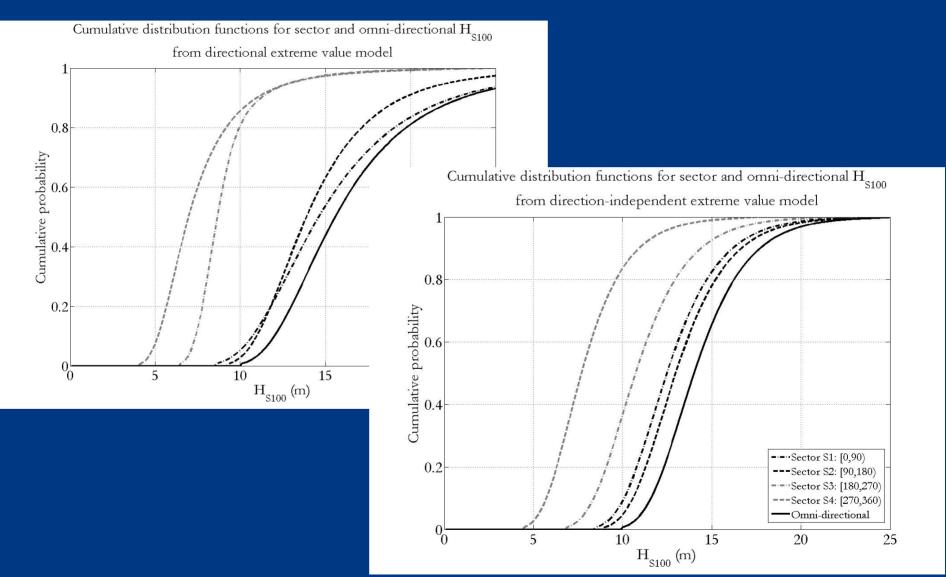
$$= \prod_{i=1}^{n} \left\{ \sum_{k=0}^{\infty} P(\rho_i(S) \mid X_i \le x \mid X_i > u, M_i = k) P(M_i = k) \right\}$$

$$= \exp \left\{ -m \sum_{i=1}^{n} \left(1 + \frac{\gamma(\theta_i)}{\sigma(\theta_i)} \left(\frac{x}{\rho_i(S)} - u \right) \right)^{-\frac{1}{\gamma(\theta_i)}} \right\}$$

where $m = \frac{P}{P_0}$ is the expected value of the number of occurrences of storm which is assumed to follow a Poisson distribution

P04627_002 Sl.14

GOMOS quadrant & omni extremes



Omni-directional 100-yr maximum cumulative probability

$$P(X_{\max 100Omni} \le x) = \prod_{i=1}^{m} P(X_{\max 100S_i} \le x)$$

where $P(X_{\max 100S_i} \le x)$ is cumulative probability for the maximum in the sectors $\{S_i\}_{i=1}^m$ in a 100-yr period

The 100-yr design $H_{\rm s}$ can be calculated for a particular nonexceedance probability $q_{100Omni}$ from

$$q_{100Omni} = P\left(X_{\max 100Omni} \le x_{100Omni}\right)$$

Specification of $q_{100Omni}$ does not allow unique values of the sector 100-yr design H_s

CASE I: All but one sectors have negative shape parameter

Each sector with negative shape parameter has an upper limit of storm peak $H_{\rm s}$

Set design values for each of these sectors to the maximum, with $q_{100Si} = 1$

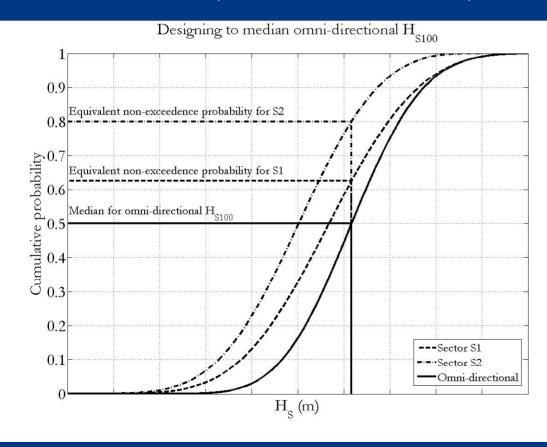
and

$$q_{100Omni} = \prod_{i=1}^{m} q_{100Si} = q_{100S}^*$$

where S^* is the remaining sector with positive shape parameter

CASE II: All sectors set to omni-direction $H_{s100Omni}$

set
$$q_{100S_i} = P\left(X_{\max 100S_i} \le x_{100Omni}\right) \quad \forall c$$



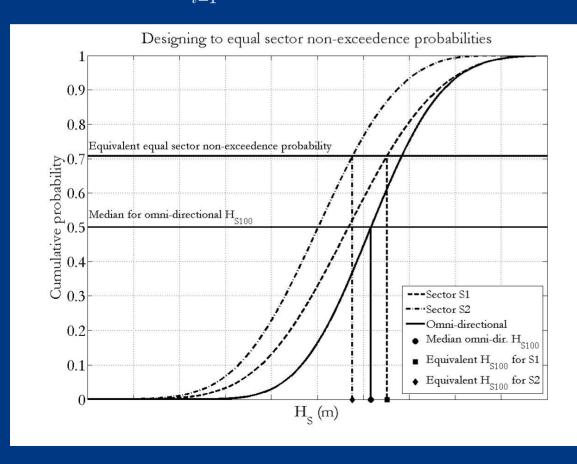
- non-exceedance probabilities different for each sector
- non-exceedance probability for most severe sector less than less severe
- non-exceedance probability for most severe at least as large as omnidirection

ight 2005 SIEP B.V. Shell Expl

Design criteria for directional extremes

CASE III: All sectors have equal non-exceedance probability

set
$$q_{100Omni} = \prod_{i=1}^{m} q_{100S} = (q_{100S})^m$$
 where $q_{100S} = (q_{100Omni})^{\frac{1}{m}}$



- sets 100*m* return-period levels for each sector
- ullet most severe sector higher H_{s100S_i} than omnidirection value
- setting the most extreme sector to 100*m*-year level might be "over-conservative"

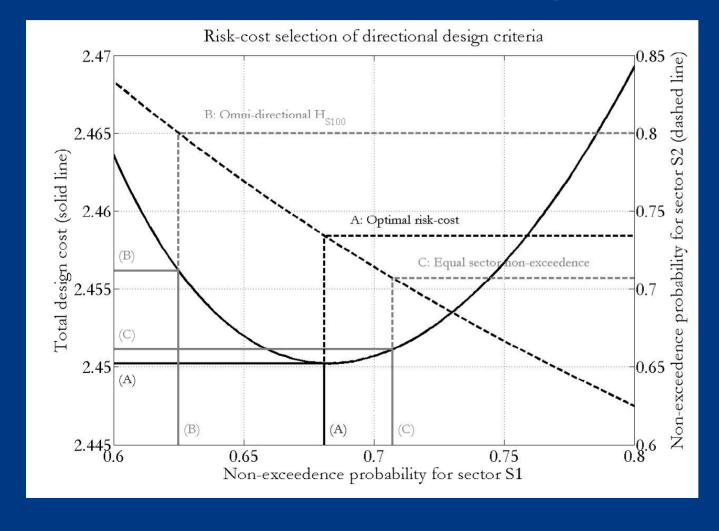
Risk-cost method

Suppose c(x) is the cost of designing to a storm peak H_s

The overall cost of design is: $RC = \sum_{i=1}^{m} c(x_{100S_i})$

The optimal design is that which minimises RC subject to $q_{100Omni} = \prod_{i=1}^{m} q_{100S_i}$

Risk-cost method – two sector example $c\left(x\right)=0.001x^{2}$



- total design cost for $q_{100Omni} = 0.5$
- optimal design cost balance between "omni-directional design" and "equal non-exceedances design"

Design criteria based on median omni-directional $H_{s100Omni}$

		Risk-cost optimal			Omni-direction			Equal sector non-exceedance		
	Sector	RC	x_{100S_i}	q_{100S_i}	RC	\mathcal{X}_{100S_i}	q_{100S_i}	RC	\mathcal{X}_{100S_i}	q_{100S_i}
Directional Model	[0,90)	8.78	18.03	0.75	9.73	15.60	0.59	9.29	20.20	0.84
	[90,180)	8.78	17.40	0.81	9.73	15.60	0.69	9.29	17.90	0.84
	[180,270)	8.78	11.44	0.91	9.73	15.60	0.98	9.29	10.30	0.84
	[270,360)	8.78	10.90	0.90	9.73	15.60	0.98	9.29	9.70	0.84
Direction- independent model	[0,90)	7.56	15.00	0.82	7.84	14.00	0.72	7.59	15.20	0.84
	[90,180)	7.56	15.40	0.82	7.84	14.00	0.66	7.59	15.70	0.84
	[180,270)	7.56	13.41	0.84	7.84	14.00	0.88	7.59	13.40	0.84
	[270,360)	7.56	10.67	0.89	7.84	14.00	0.98	7.59	10.10	0.84

- Directional model design values > Direction independent values
- RC model avoids large range of q_{100S_i} and x_{100S_i} of other two methods
- RC model design based on directional EV model is preferable

Conclusions

- Strong general case for adopting directional extreme model to storm peak [unless it can be demonstrated statistically that a direction free model is no less appropriate].
- A directional extremes model [e.g. Fourier series expansion] allows directionally consistent extreme values to be derived.
- Important to consider directionality of sea states when developing design H_s criteria [omni-directional extremes from directional data can be significantly different from a direction-independent derivation].
 - Even when the extremal characteristics of storm peak $\,H_s\,$ are direction independent rate of occurrence of storms is dependent on storm direction the distribution of $\,H_{s100}\,$ will have directional dependence in general.
- Risk-cost method is an objective approach to optimise directional criteria, while preserving overall reliability [RC method avoids more extreme properties of other design methods].