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1. Introduction  
 

After the 2005 disaster of hurricane Katrina and the tsunami tragedy that struck Asia in 
the end of 2004, the public awareness of the potential impacts of storm surges and ocean waves 
on the human society, environment and ecosystem has increased. One of the issues of concern is 
whether or not there exists human influence on the storm and ocean wave climate. Although this 
issue is yet to be addressed (and we attempt to do so in this study), there is evidence for 
significant changes in North Atlantic cyclone activity and ocean wave heights in the cold seasons 
of the last half century. For example, a significant increasing trend in winter (January-March) 
strong-cyclone activity over the high-latitude North Atlantic has been identified in the sea level 
pressure (SLP) fields taken from both the ERA40 reanalysis (ERA40 hereafter; Uppala et al., 
2005) and the NCEP-NCAR Reanalysis (NNR hereafter; Kalnay et al., 1996; Kistler et al., 2001) 
for the 1958-2001 period, which also show a significant decreasing trend over the mid-latitude 
North Atlantic (Wang et al., 2006). These changes are found to be associated with the mean 
position of the North Atlantic storm track shifting about 181 km northward (Wang et al., 2006).  
Consistent with such cyclone activity trends is that the northeast North Atlantic ocean was found 
to have roughened in winter during the 1958-1997 period, while significant decreases of ocean 
wave heights are identified in the subtropical North Atlantic (Wang and Swail, 2006a; Wang and 
Swail, 2002 and 2001; WASA Group, 1998; Bacon and Carter, 1991). In this study, we detect 
human influence on the storm and ocean wave climate, on the basis of multiple climate model 
simulations of human-induced climate change and statistical simulations of the corresponding 
changes in ocean wave heights. 
 
2. Data, detection method, and results  
 

Since ocean wave heights are not directly available from the output of global climate 
models, we use a statistical model to represent the observed relationship between the atmosphere 
and significant wave height (SWH), which is in turn used to simulate the SWH changes 
corresponding to climate model simulations of human-induced climate change. It has been shown 
that seasonal mean SLP anomalies, tP , and seasonal mean anomalies of squared SLP gradients, 

tG , are good predictors for ocean wave heights (Wang and Swail, 2006a and 2006b). Thus, 
statistical simulations of SWH changes corresponding to the simulated global warming are 
conducted in the same way as in Wang and Swail (2006b), using the following regression model: 

tttt cGbPaX ε+++= ,                             (1) 
where tX  denotes either seasonal mean SWH, tH , or the time-dependent location parameter, tµ , 
of the generalized extreme value distribution, ),,( ξσµtGEV , of seasonal maximal SWH, and tε  
denotes a white noise process. 

For each year t, we calculate tP  and tG  from the relevant monthly mean SLP fields taken 
from ERA40 and NNR for the 1958-2001 period and use them as proxy of observations. For both 



tP  and tG , the anomalies are relative to its climate of the baseline period 1961-1990, and are on 
a 5º×5º lat-long grid. As proxy of SWH observations, we use seasonal means and maxima of 
SWH derived from the original ERA40 wave data (Uppala et al, 2005; Caires et al., 2004), which 
are on the same 5º×5º lat-long grid as do tP  and tG  and are hereafter referred to as “observed” 
wave data. Two seasons are analyzed here, that is, winter (January-March or JFM) and fall 
(October-December or OND). Further, the climate model simulated tP  and tG  are derived from 
nine ensembles of integrations (45 in total) with historical greenhouse gases and sulphate aerosols 
forcing from nine coupled ocean-atmosphere models (see Table 1), which were obtained from the 
IPCC Fourth Assessment Report (AR4) model output archive. 

 
Table 1.  The nine coupled ocean-atmosphere models used in this study and the 
                number of integrations (runs) conducted with each of these models. 
 

Model Number of runs 
ECHO-G 5 
GFDL CM2.0 3 
GFDL CM2.1   3 
GISS Model E H 5 
GISS Model E R 9 
MIROC 2 medres 3 
MRI CGCM2 3 2a 5 
NCAR CCSM 3     8 
NCAR PCM 1      4 

 
First, the above regression relationships are trained using detrended series of the related 

SWH and SLP variables for the 44-year period from 1958-2001, so that the effect of trends in the 
time series of the predictand and predictors on the relationship is diminished. Such SWH-SLP 
relationships are then used to simulate seasonal means and 20-yr return values of SWH that 
correspond to climate model simulations of human-induced climate change, by feeding the 
climate model simulated tP  and tG  into the estimated regression relationship ttt GcPbaH ˆˆˆˆ ++=  

or )ˆ,ˆ,ˆˆˆˆ( ξσµ ttt GcPbaGEV ++= . Such simulations are conducted for each of the 45 integrations of 
human-induced climate change, subsequently. Further, in order to have a set of SWH 
“observations” that are somewhat independent of the model used for ERA40, we also feed the tP  
and tG  as derived from NNR to the regression relationship, to obtain the related (statistical) 
hindcasts of the SWH variables for the 1958-1999 period (hereafter referred to as the NNR 
hindcast of SWH; note that an original NNR wave dataset does not exist). For comparison, an 
ERA40 hindcast of the SWH variables for the same 42-year period is also obtained, using tP  and 

tG  as derived from ERA40.  
Then, a linear trend is estimated for each of the “observed”/hindcast and simulated SWH 

variables (seasonal mean anomalies and 20-yr return values of SWH, avgH  and yH 20 ) at each 

grid point for the 42-year period from 1958 to 1999 (because the climate model integrations do 
not cover the period after 1999). The resulting observed/hindcast trend patterns are compared 
with the corresponding multi-model mean trend patterns to determine whether or not human 
influence on the observed trend pattern is detectable. More specifically, we take the optimal 
detection approach (Allen and Stott, 2003), which assumes that the observed linear trends ( oY ) 
may be represented as the linear sum of the scaled simulated response ( mY ) to greenhouse gas 
and sulphate aerosol forcing, and the internal variability (η ) in the observed trends: 



ηςβ +−= )( mo YY                                 (2) 
where ς  denotes the component of internal variability in the simulated response to greenhouse 
gas and sulphate aerosol forcing (i.e., in the mutli-model mean trends). It is also assumed that ς  
and η  share the same structure. The regression coefficient β  is estimated with a total least-
squares fit, with its uncertainty range being estimated from the inter-integration variability (after 
removing the ensemble mean field from each integration in that ensemble). The forcing response 
pattern is detected if β  is found to be positive and inconsistent with zero. We also check whether 
the climate models provide a plausible explanation of the observations by testing whether or not 
the residual η  is consistent with the corresponding inter-integration variability, which is 
estimated using the climate model simulations for 1900-1941 (a period different from the period 
used for estimates of trends and β ). 

While human influence on SLP (i.e., equivalent of tP ) has been detected (Gillett et al., 
2003), work on detection of human influence on tG , which represents the field of geostraphic 
wind energy and hence the atmospheric storminess, has not been done. Thus, the same optimal 
detection approach is also applied to detect human influence on the trend patterns of tP  and tG , 
separately, using the quantities derived from either ERA40 or NNR as proxy of observations.  

Figure 1 shows the estimated linear trend patterns of tP  as derived from ERA40, NNR, 
and the multi-model/ensemble mean simulations of tP , respectively. These patterns are in 
agreement with those shown in (Gillett et al., 2003). Generally, they are characterized by a 
downward trend in the high-latitudes and an upward trend in the mid-latitudes, with the zero-
trend contour locating more southward in fall than in winter (compare the right and left panels in 
Fig. 1).  The multi-model simulated trend patterns are very similar to the observed ones as 
derived from either ERA40 or NNR, especially in winter, although the magnitude of trend is 
generally underestimated by the climate models. There is little difference between ERA40 and 
NNR, except that ERA40 shows larger trends than does NNR, especially in fall (see Figs. 1a-b 
and 1e-f). 

As shown in Fig. 2, the trend patterns of tG  are characterized by a strong upward trend in 
the high-latitudes and a relatively weaker downward trend to its south, with the center of the 
upward trend locating a little more southward and less zonally-oriented than that of the 
corresponding tP  trend pattern. The differences of trend magnitude between winter and fall are 
also more prominent for tG  than for tP  (Figs. 1 and 2). There is no remarkable difference 
between ERA40 and NNR in terms of the trend pattern of tG . Note that the storminess trends as 
inferred from the geostraphic wind energy ( tG ) field are also consistent with the findings of 
previous studies using different storminess indices (e.g., Wang et al. 2006). 

Figure 3 shows the estimated linear trend patterns of seasonal means and 20-year return 
values of SWH ( avgH  and yH 20 ) as derived from the original ERA40 wave data, the NNR 

hindcast wave data, and the multi-model/ensemble mean simulations of avgH  and yH 20 , 

respectively. The trend patterns as derived from the ERA40 hindcast wave data are not shown 
here, because they are very similar to those shown in Figs. 3e-f and 3k-l. In winter, the trend 
patterns are characterized by an upward trend in the northeast North Atlantic and a downward 
trend in the mid-latitudes, with little difference between the observed and simulated trend patterns 
(except that the simulated magnitude of trend is much smaller than the observed one). In fall, the 
center of the upward trend in the ERA40 wave data is more meridian-oriented and centered in the 
North Atlantic than the corresponding simulated one, with more profound differences between 
the observed and simulated trend patterns for the extreme wave heights (compare Figs. 3b,d and 



3h,j), especially in the northeast North Atlantic. In general, the extreme wave heights seem to 
have larger trends than do the seasonal means, especially in the original ERA40 wave data. 
 
 

a. ERA40 tP  - JFM 

 

b. ERA40 tP  - OND 

 
 

c. Simulated tP  - JFM 

 

 

d. Simulated tP  - OND 

 
 

e. NNR tP  - JFM 

 

 

f. NNR tP  - OND 

 
 
Figure 1.  The 1958-1999 trend patterns of the seasonal mean SLP anomalies 
( tP ) as derived from ERA40, NNR, and the multi-model/ensemble mean 
simulations of tP . Solid contours indicate upward/positive trends, and dashed 
ones downward/negative trends. Note the different scales of contour levels, 
i.e., the simulated trends (panels c-d) are smaller than those of ERA40 or 
NNR, as indicated by the contour labels. 

 



 
a. ERA40 tG  - JFM 

 

b. ERA40 tG  - OND 

 
 

c. Simulated tG  - JFM 

 

 

d. Simulated tG  - OND 

 
 

e. NNR tG  - JFM 

 

 

f. NNR tG  - OND 

 
 
Figure 2.  The same as in  Fig. 1 but for the 1958-1999 trend patterns of 
seasonal anomalies of squared SLP gradient ( tG ). 

 



 
a. ERA40 avgH  - JFM 

 

b. ERA40 avgH  - OND 

 
 

c. Simulated avgĤ  - JFM 

 

 

d. Simulated avgĤ  - OND 

 
 

e. NNR avgĤ  - JFM 

 

 

f. NNR avgĤ  - OND 

 
 
Figure 3.  The same as in  Fig. 1 but for the 1958-1999 trend patterns of the 
seasonal means and 20-year return values of SWH, avgH  and yH 20 , as 

derived from the original ERA40 wave data, the NNR hindcast wave data, and 
the multi-model/ensemble mean simulations of avgH  and yH 20  (i.e., avgĤ  

and yH 20
ˆ ), respectively. 

 



 
g. ERA40 yH 20  - JFM 

 

h. ERA40 yH 20  - OND 

 
 

i. Simulated yH 20
ˆ  - JFM 

 

 

j. Simulated yH 20
ˆ  - OND 

 
 

k. NNR yH 20
ˆ  - JFM 

 

 

l. NNR yH 20
ˆ  - OND 

 
 
Figure 3.  (Continued) 

 
 

As summarized in Table 2 and shown in Fig. 4, results of our detection study indicate that 
there exist detectable human influences on the observed 1958-1999 trends of North Atlantic 
ocean wave heights and storminess, because the scaling factor β  was found to be significantly 
greater than zero (i.e., inconsistent with zero) in each case (Fig. 4).  These results are consistent 
with the relative magnitudes of the responses shown in Figs. 1-3. They are also consistent across 
the different variables ( tP , tG , avgH , and yH 20 ) and across the different data sets (ERA40 or 

NNR, original or hindcast wave data). Moreover, the results of detection on the wave heights are 
physically consistent with those of detection on the SLP anomalies or on the geostraphic wind 
energy field. Decreases in SLP and/or increases in geostraphic wind energy are associated with 
increases in ocean wave heights (both seasonal means and seasonal extremes). For tP , our results 



are in agreement with the findings of Gillett et al. (2003), with the estimated scaling factor 
ranging from 6.1 to 7.3 (Table 2), although the domain of this study is only the North Atlantic 
sector while it is global or hemispheric in Gillett et al. (2003). 

 
 

Table 2.   The estimated scaling factor β̂ , its 5-95% uncertainty range ( hl ββ ˆ,ˆ ), and the result of 
the related residual check for each of the listed detection variables as derived from the ERA40 or 
NNR dataset. The “#EOFs” column shows the numbers of retained leading EOFs corresponding 
to these estimates, with the range of EOF truncation that leads to similar results shown in the 
parentheses. Here, “small ς ” means that the climate models were found to underestimate the 
internal variability, which leads to conservative detection conclusions. In the “Residual check” 
column, the expression in parentheses means that an EOF truncation at the indicated range is 
associated with “small ς ”. 

 
Season 

Detection 
variable 

 

β̂  

 

lβ̂  

 

hβ̂  

 
#EOFs 

 
Residual check 

ERA40 tP  6.250 2.360 15.480 6 (4-7) OK (others in 2-12:small ς ) 

ERA40 tG  4.475 0.684 12.402 13 OK (others but 5:small ς ) 

ERA40 avgH  11.820 6.036 34.085 2 OK (3-13:small ς ) 

ERA40 yH 20  11.081 5.259 36.272 2 OK (3-9:small ς ) 

ERA40 avgĤ  6.220 2.461 14.741 7 (6-7) OK (others in 2-9:small ς ) 

ERA40 yH 20
ˆ  6.886 3.023 15.991 7 (6-8) OK (others in 2-11:small ς ) 

NNR tP  6.178 2.266 15.516 6 (4-7) OK (others in 4-12:small ς ) 

NNR tG  4.846 0.573 15.662 9 (7-10) OK (others but 
11,13,14:small ς ) 

NNR avgĤ  6.106 2.426 14.213 7 (6-7)    OK (others in 2-9:small ς ) 

 
 
 
 
JFM 

NNR yH 20
ˆ  6.837 2.952 16.070 6 (2,6-7,9) OK (others in 2-11:small ς ) 

ERA40 tP  6.995 3.281 15.310 19 (7-24) small ς  

ERA40 tG  2.687  0.210 6.012 23 (22-30) small ς  

ERA40 avgH  13.545 6.963 43.529 2 (2-3) OK (4-11:small ς ) 

ERA40 yH 20  8.658 3.512 28.665 3 (2-3) OK (4-7:small ς ) 

ERA40 avgĤ  4.408 0.974 10.885 10 (14-30) small ς  

ERA40 yH 20
ˆ  4.063 1.390 8.197 12 (11-12) OK (others in 10-23:small 

ς ) 

NNR tP  7.295 3.394 16.570 19 (6-8,10-20) small ς  

NNR tG  2.720 0.027 6.457 18 OK (21-30:small ς ) 

NNR avgĤ  5.038 1.727 11.334 20 (14-20,23-24) small ς  

 
 
 
 
 
OND 

NNR yH 20
ˆ  4.456 1.789 8.664 12 (10-12) OK (13-17:small ς ) 

 
 



 
 

 
 

Figure 4. The scaling factors ( β̂ ) in the regressions of the 1958-1999 trend 
patterns of the seasonal mean SLP anomalies tP , seasonal anomalies of 
squared SLP gradients tG , and seasonal means and 20-yr return values of 
SWH ( avgH  and yH 20 ), separately, on the relevant multi-model mean of 

simulated trend patterns. The labels “ERA40” and “NNR” denote the results 
of detection on tP  and tG  as derived from ERA40 and NNR, respectively. 
While the label “ERA40-SWH” denotes the results of detection on the original 
ERA40 SWH data, “ERA-SWH” and “NNR-SWH” denote those on the SWH 
hindcasts using as predictors tP  and tG  as derived from ERA40 and NNR, 
respectively. 

 
 

However, the associated 5-95% uncertainty ranges on β  do not include unity in most 
cases (especially for the seasonal mean quantities tP  or avgH ; see Table 2 and Fig. 4), which 

suggests that the models significantly underestimate the magnitude of the response of the ocean 
wave heights and atmospheric storminess to increases in greenhouse gases and sulphate aerosols 
(assuming the observed trends are not systematically overestimated in the ERA40 or NNR data). 
The residual η  was found to be consistent with the corresponding inter-integration variability for 



all winter cases, but only for half of the fall cases. Specifically, in fall, the climate models were 
found to underestimate the internal variability in tP  of both ERA40 and NNR, in tG  of ERA40, 
and in avgH  of the ERA40 or NNR hindcast (see Table 2). Such an underestimate leads to 

conservative detection conclusions. 
 
3. Conclusions  
 

In this study, work on detection of human influence on North Atlantic ocean wave 
heights and atmospheric storminess is performed, based on multiple climate models simulations 
of human-induced climate change and statistical simulations of the corresponding changes in 
ocean wave heights for the cold seasons of 1958-1999. Two global reanalyses, ERA40 and NNR, 
are used as proxy of observations of the atmosphere and ocean wave heights (both seasonal 
means and extremes). 

The results suggest that anthropogenic greenhouse gases and sulphate aerosols have had a 
detectable influence on North Atlantic ocean wave heights and atmospheric storminess in the cold 
seasons (especially winter). The observed 1958-1999 trend patterns of ocean wave heights and 
atmospheric storminess are characterized by an upward trend in the high-latitudes (especially the 
northeast North Atlantic in winter) with a downward trend to the south, which were found to 
contain a detectable response to the anthropogenic forcing. However, the climate models were 
found to significantly underestimate the magnitude of the response in general, while these models 
also underestimate the internal variability in the fall season. 
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