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1. Introduction 
 
On New Year’s Day of 1995 a severe storm occurred in the central North Sea at Statoil’s 
Draupner platform. At just before 15.30, a wave crest of 18.5m was recorded by a downwards 
pointing laser wave gauge. This is one of the highest wave crests ever recorded in the North 
Sea and has generated much interest as a possible ‘freak’ or ‘rogue’ wave, see for example 
Haver and Jan Andersen (2000) and Prevosto and Bouffandeau (2002). 
 
Haver (2004) gives a discussion of the meteorology and the storm evolution when the large 
wave occurred. Unfortunately, only two 20min records are currently available, with start times 
separated by 1 hour. Henceforth, these will be described as the 15.20 and 16.20 records. The 
surface elevations for both are shown in Figure 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 1. The Draupner wave records 
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With a zero crossing period of Tz~12s, there are approximately 100 waves in each record. 
The data sampling rate was 2.1Hz, so the peak of the large wave is relatively well resolved. 
The Draupner platform consists of two slim jacket structures connected by a bridge. The laser 
wave gauge was attached to the subsidiary jacket supporting the flare tower, so it is 
reasonable to assume that the records are uncontaminated by wave-structure interaction. Thus, 
in the subsequent analysis we assume that the records are accurate representations of the 
free-field waves. Minor damage was done to equipment below deck level on the platform 
(Haver, private communication), so we can have confidence that green water reached this 
level. The significant wave height for each record is Hs ~ 12m, corresponding to a severe 
winter storm in the central North Sea. 
 
In this paper we attempt to analyse various aspects of the waves in both Draupner records, 
examining both the properties of the New Year wave and the associated wave records. Only 
the two Eulerian surface elevation records are available. There do not appear to be any other 
wave measure stations anywhere close to the Draupner platform, so a priori there appears to 
be no information available as to the directional spreading in the New Year storm. This paper 
aims to address this issue. 
 
2. Overall crest-trough asymmetry: 2ndorder sum contributions 
 
It is clear from any Eulerian surface elevation time history that water waves are vertically 
asymmetric. Crests are spiky and larger, troughs smaller and more rounded. Most of these 
differences are simple consequences of the harmonic structure of waves – and the dominant 
contributions are at 2nd order in a Stokes-type perturbation expansion. Initially we 
demonstrate this vertical asymmetry by simply measuring every maximum elevation between 
zero up and down crossings (crest) and every minimum between zero down and up crossings 
(trough). These crest and trough values are then sorted into ascending order and then plotted 
as pairs: the n-th largest crest with the n-th largest trough. Figure 2 shows the results for the 
15.20 and 16.20 records. 
 
 
 
 
 
 
 
FIG 2.  
Ordered crest-trough statistics 
 
 
 
 
 



 
 
The ordered crest-trough distributions for both records are similar, except at the top end where 
the 15.20 record contains one anomalously large crest, whereas the 16.20 record contains a 
rather deep trough and no large crest. Other than these single largest extrema, all the records 
can be approximated by a single line through the origin with a slope slightly steeper than 1:1. 
 
We shall approximate the trough-crest asymmetry using a regular wave model. For details see 
Walker et al. (2005). The traditional Stokes expansion of the surface elevation time history for 
a regular wave train on finite depth can be written to 3rd order as (Fenton 1990) 
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This form is awkward to apply to an irregular wave train because of the apparent necessity to 
estimate the local wave number (k) and the product of wave number and water depth (kd) 
individually. However, it can be re-written as 

2
33

2
33

2222

2
333222 3cos2coscos)(

dBkS

dkBS
d
Sa

d
Saat

×=

×=

++= φφφη

  
In this form only the local depth (d) and the Stokes coefficients S22 etc. are required. At the 
Draupner location the water depth is known to be ~70m. Thus, the analysis of 2nd order 
asymmetry simply reduces to estimation of Stokes coefficient (S22), the local value kd and an 
approximation a cos f for the linear component for the wave.  
 
 
 
 
 
 
FIG 3. 
Variation of the modified 
Stokes coefficients S22 (and S33)  
with water depth (kd) 
 
 
 
 



As a helpful coincidence, the combination of the zero-crossing wave period and the water 
depth results in an estimate of kd ~ 1.6 so Figure 3 demonstrates that the Stokes coefficient in 
the new form should be remarkably insensitive to the precise values of wave number and 
water depth at the Draupner platform in the storm of 1st January 1995. Thus, the estimation of 
the expected vertical asymmetry reduces to an estimation of the linear component and the 
coefficient S22.    
 
If we have a linear signal and its Hilbert transform (easily obtainable via a FFT and then 
phase-shifting by 90±), then these can be written as  
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A double frequency component can be approximated as 
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Unfortunately, all we have is the fully nonlinear wave record, not its (assumed) linear 
decomposition. However, we can estimate the linear part by high-pass filtering to remove the 
long wave 2nd order difference terms and then forming an approximation 
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We then look for the value of the average 2nd order Stokes coefficient S22 that completely 
removes skewness from the resulting hL record. Histograms for the entire 20min records are 
shown in Figure 4 below (for the 15.20 record we remove a 45sec period around the giant 
wave, as this is assumed to be atypical of the rest of the record). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG 4. Histograms of the original 15.20 and 16.20 records, and the linearised distributions 
  below. The original histograms are in blue, their mirror images in red. 



The estimated mean values of the Stokes coefficient S22 from the field data are  
15.20 record   0.96 
16.20 record   1.02  

       minimum of theoretical S22 curve  1.10  
 
From the data, we obtain estimates ~10% lower than the theoretical minimum of the Stokes 
regular wave coefficient, as shown on Fig.3. Is this 10% difference significant or just a 
consequence of statistical variability, the finite duration of the records and the analysis 
technique? 
 
These values are robust, being consistent with the close to 1:1 linearised crest-trough statistics. 
Figure 5 shows the paired crest and trough data comparable to Fig.2, but now for the 
linearised wave data.  
 
 
 
 
 
 
FIG 5.  
Ordered crest-trough statistics for 
linearised wave records 
 
 
 
 
 
 
 
 
 
 
There are three obvious features of waves on the open sea: broadbandedness and nonlinearity 
are key in the vertical asymmetry discussed above. However, the third feature, directional 
spreading or the short crested nature of waves, has not yet featured in the discussion. It may 
seem strange to discuss spreading based only on Eulerian time histories but there are 
consequences even within a time history resulting from directional spreading which we now 
present – but not of course the mean direction which is completely unknown. 
 
The simple form of the Stokes expansion to 2nd order was first generalised to broadbanded 
waves with directional spreading by Dean and Sharma (1981) for finite depth. The equations 
in the original Dean and Sharma paper contain misprints, so more reliable and consistent 
sources for the rather complicated interaction kernels are Dalzell (1999) and Forristall (1999). 
 



What does not appear to have been noticed before is the precise shape of the interaction 
kernel for the 2nd order sum term. In keeping with our previous narrow banded approximation 
for the Draupner records, we examine the effect of directional spreading on the single 
cross-interaction term for 2 wave components with the same frequency propagating in 
different directions separated by a total angle q. The interaction coefficient is scaled to unity 
when the two components are parallel. Figure 6 shows the relative change of the kernel with 
water depth and angular separation. 
 

 
FIG 6.  2nd order sum interaction kernel for waves of the same frequency as a function of the 

   total angle of separation q and water depth kd. 
 
 
Unless the water is very shallow and the wave pair is very highly spread, the reduction in the 
interaction kernel is close to a parabolic variation with angle and virtually independent of 
water depth. Thus, the reductions in the S22 coefficients for the two 20 min Draupner records 
below the Stokes minimum can be converted directly into albeit rather crude estimates of the 
mean directional spreading for each record: 
 

Stokes coefficient S22   rms spreading (±)  
 

15.20 record    0.96     20 
16.20 record   1.02     15 

        
Here we express the spreading angle as the standard deviation of a wrapped normal 
distribution, see Tucker and Pitt (2001) and Jonathan and Taylor (1997). The only 
independent estimate of spreading in this storm that we have been able to obtain is from a 
directional wave buoy in the Auk field where the rms spreading was ~20± over several hours 
around the peak of the storm (Ewans, private communication). Auk experienced the same 



severe winter storm as Draupner but is located 200km north of Draupner, so the local wave 
climate could have been significantly different. However, we now turn to the bound wave 2nd 
order difference terms. 
 
3. Long bound waves : difference terms 
 
Have previously filtered out the long wave terms, we now analyse them to see whether 
another estimate of spreading can be obtained. Just as for the sum interaction, both Dalzell 
(199) and Forristall (1999) give the algebraically complicated difference term. We now 
low-pass filter the measured records to remove the linear and higher components. A cut-off of 
~0.04Hz is suitable. Based on the high-pass filtered record we have an approximation for the 
linear components. Combined with an assumed directional (constant) wrapped normal model 
for the directional spreading, we compute an estimate of the long bound wave components for 
each record. 
 
 
4. THE LARGEST WAVE – NEWWAVE AND WAVE-WAVE INTERACTIONS 
 
5. CONCLUSIONS 
 
REFERENCES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 7  The 16.20 Draupner record, the measured long wave time history in blue and 

various approximations based on the linearised wave history and single Gaussian 
directional distributions with 0, 20 and 35 ± spreading. 

 



 
As an example, the 16.20 Draupner record is shown in Figure 7. Clearly, the long waves are 
small O(10)cm components hidden within O(5)m waves. Note also the clear appearance of 
group structure in the low-pass filtered record. Whenever the wave field is particularly 
energetic locally, this is associated with long wave set-down. The uni-directional long wave 
reconstruction is clearly too large, whereas the 35± reconstruction is too small. A spreading 
~20± perhaps seems reasonable. However a more quantitative measure of the goodness of the 
fit is required. We use a normalised discrepancy 
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where hsim is the simulated 2nd order difference signal, hLowPass is the low-pass measured 

record and hL is the linearised signal as estimated previously. The wave number 
corresponding to the peak of the frequency spectrum is used to produce a non-dimensional 
quantity. Before presenting the results of the long wave estimation procedure, there are 2 
other models for spreading that we will also consider. 
 
In a very elegant analysis, Ewans (1998) presented very careful fits to a large amount of 
quality controlled spreading data as recorded with a directional buoy of the coast of New 
Zealand in almost perfect JONSWAP-type fetch limited seas. He conclusively showed that 
spreading is frequency dependent, being smallest at ~15± close to the spectral peak and 
bi-modal at high frequencies. His proposed double Gaussian spreading function is shown in 
Figure 8. 

 
FIG 8. Double Gaussian model of directional spreading for fetch-limited seas, Ewans (1998) 

 
 
We will fit 3 types of spreading function to the Draupner records:  
1. A simple frequency-independent wrapped Normal angular distribution,  



2. A modified version of the Ewans model with the bi-modal shape of the frequency 
  dependent distribution retained but the whole angular width simply scaled, 
3. A frequency-independent distribution of two overlapping Gaussians, each with an rms 
  width of 15± separated by an arbitrary angle. 
 
For each representation of directional spreading, the spreading is shown as the overall rms 
value in Figure 8. The 15.20 record now has 2mins around the large wave removed, longer 
than previously as the timescales are now associated with group structure not single waves. 

 

FIG. 8  Normalised discrepancy between the measured long waves in the field and the 
      approximations based on linear waves and 3 models of directional spreading. 



Both records show a clear minimum for the discrepancy function. For the 15.20 record the 
best fitting spreading model has an rms spreading of 20±, whereas the 16.20 record has a best 
estimate of 15± - both in good agreement with the estimates from the 2nd order sum analysis in 
the previous section! Further, there is no evidence that a split or bi-modal angular distribution 
could improve the 16.20 fit. However, the 15.20 fit is improved by splitting the single 
Gaussian into 2 narrower ones and slightly further improved by making this splitting 
frequency dependent.  
 
Interestingly, Haver (2004) refers to two meteorological lows generating the waves in the 
Draupner storm. With different sizes and fetches, there could have been two superimposed 
wave fields crossing at a relatively small angle initially, which then merged into one an hour 
later. With different peak periods, this would imply that the initial overall sea-state was 
uni-modal at low frequency, becoming bi-modal or at least more spread at frequencies above 
the peak of the second wave field. This would be consistent with the different optimal fits for 
the 15.20 and 16.20 records. 
 
4. The large wave – NewWave and 1-D simulations 
 

Having discussed at length various features of the two 20min records, we now turn our 
attention to the Draupner large wave which occurred at approx. 15.30. Initially we discuss a 
linear model. The average shape of a large extreme in a linear random Gaussian process is 
simply proportional to the auto-correlation function of the underlying process. This 
remarkable result, due to Lindgren (1970) and Boccotti (1983), has become known as 
NewWave in the offshore engineering literature, see Walker et al. (2005).  
 
Thus, we compare the measured shape of the Draupner wave to the suitable scaled 
auto-correlation function based on the measured spectrum for the 15.20 record. We use the 
Stokes 5th order expansion as presented by Fenton (1990) using a generalization of the 
approach in Section 2 above to re-create the associated bound harmonics. The harmonic sum 
components for the NewWave and a comparison with the measured extreme is shown in 
Figure 9. Initially this comparison is performed for the long assumed bound wave 
components filtered out. The overall shapes match relatively well for a linear NewWave with 
amplitude of 14.7m. The local crest shape is reasonable but the troughs either side of the large 
crest are slightly too deep. However, we only have one example of a crest of this size and the 
NewWave shape is a statistical average shape, so we probably should not expect any better 
matching. 
 
Given a significant wave height Hs~12m, a linear crest elevation of 14.7m is an unlikely 
event. We estimate the return rate as ~1 in 200,000 waves. Thus, this is an unlikely occurrence 
in a single record of ~100 waves! However, it should be recalled that there are many other 
20min records from Draupner without a wave of this severity. 
 
In deep water, the coalescence of independent linear components results in significant 
third-order wave-wave interactions. In uni-directional groups this leads to dramatic local 



evolution and a much taller group than expected, see Taylor and Haagsma (1994) and 
Baldock, Swan and Taylor (1996). In a directional spread group, shape changes occur with 
contraction of the group in the mean wave direction and expansion along the crests but no 
significant extra elevation, Gibbs and Taylor (2005). One interesting question is whether any 
comparable processes could occur to a focussed wave group based on the Draupner. sea-state. 
We make use of a recently developed high order Boussinesq model to simulate NewWaves 
based on the Draupner large wave. These results confirm previous work using a fully 
nonlinear potential flow solver, Vijfvinkel and Taylor (1998).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 9. Comparison of 5th order NewWave of linear amplitude 14.7m to 
  the measured Draupner wave 

 
Results from the Boussinesq model for NewWave simulations of the Draupner extreme event 
for kd=1.5 are shown in Figure 10. The initial condition for each is a linear NewWave at 20 
periods before focus. Thus, the shorter wave components are ahead of the longer ones. The 
runs cover 40 periods. Each plot shows the initial and final wave profiles as well as the profile 
corresponding the maximum crest elevation at any time throughout the simulations. Since the 
waves are weakly nonlinear,, the maximum crest elevations occur at times and positions 
slightly shifted from those of linear focus. We find very slight nonlinear de-focussing as the 
amplitude of the wave group is increased rather than the positive focussing expected on deep 
water. The peak crest for steepness ka=0.3 is slightly less than 3x that for ka=0.1 and the 
steeper wave group is slightly wider at focus. Here, ka defines the linear crest amplitude of 
perfect linear focus. 
 
This slight de-focussing can be associated with the switch of the nonlinear Schrodinger 
equation from focussing to de-focussing at kd=1.36, see Johnson (1997). We conclude that 3rd 
order resonant wave-wave interactions appear to play little or no role in the local evolution of 
the large Draupner crest – or at least the various nonlinear processes appear to cancel for these 



uni-directional simulations. Thus, the underlying structure of the Draupner large crest appears 
to have formed by linear dispersion and the return rate value of 1 in 200,000 may be a 
relatively robust estimate.  

 

 

 

FIG. 10 Evolution of frequency focussed uni-directional NewWave groups 
based on the 15.20 Draupner wave spectrum  



 
 
5. Is the large wave a freak ? 
 
The 18.5m crest as recorded at Draupner is undoubtedly a large wave. Is it a freak wave? The 
fit to the scaled auto-correlation including the contributions from the harmonic sum terms is 
reasonable but not good. This may be because the wave is locally sufficiently steep that 
high-order wave processes become significant, see Dyachenko and Zakharov (2001). After all, 
we do not know whether the wave was breaking or at least about to break 
 
There is one remarkable robust property of the wave, which is not shared by ay other large 
waves in either record. The large wave has a long wave set-up not a set-down. This is 
demonstrated in Fig 11, showing the largest wave in each record in the upper panels and the 
same wave histories low-pass filtered in the lower panels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 11. The largest waves in the 15.20 and 16.20 records, 
low pass filtered at 0.04Hz (blue), 0.03Hz (red) and 0.02Hz (green) 

 
 
The occurrence of a set-up rather than a set-down for the largest wave is a robust feature. 
Actually, the magnitude of the long wave set-down at ~0.4m is correct for a NewWave of 
14.7m in a directional spread sea – just the sign is wrong! We have no explanation for this 
anomaly – perhaps it is a feature shared by all true freak waves. 
 



To reinforce the significance of this observation, we compare the entire 15.20 record low pass 
filtered to the predicted 2nd order difference terms based on the linearised wave signal with the 
best-fit scaled Ewans spreading model in Figure 12. Every other large crest is associated with 
a clear local set-down. The largest set-downs are associated with the 2nd largest crest in the 
entire 15.20 record, occurring approximately 25 sec before the end, and the 1st large crest in 
the entire record.  

 
 

FIG. 12  The alignment of large set-downs with individual large wave groups 
    in the 15.20 record 
 
Actually, the shape of the long wave set-up/down record can equally well be approximated as  
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However, estimation of the magnitude of the signal requires a more sophisticated 2nd order 
analysis. 
 
 
6. Discussion 
 
This paper has summarised detailed analysis of the two Draupner records associated with the 
violent storm on 1st January 1995. The sea-states are broadbanded, the waves steep and 
vertically asymmetric. The magnitude of this asymmetry is close to but slightly smaller than 
that based on the minimum of the Stokes 2nd order coefficient for regular waves when suitably 



re-defined. This ~10% reduction is assumed to be due to directional spreading of the wave 
fields. 
 
Both the 2nd order sum and difference terms are analysed in the records and consistent 
estimates of overall directional spreading are derived: ~20± for the 15.20 record and ~15± for 
the 16.20 record. Further, the long wave analysis is most consistent with a uni-modal 
directional spreading modal for the narrower 16.20 sea, but the broader sea-state for the 15.20 
record may in fact have be two superimposed crossing wave fields, as would be consistent 
with the meteorology described by Haver (2004). 
 
One point that should be stressed is the actual meaning of these estimates for the rms 
spreading. In commonly used parlance the spreading of a wave field is measured with respect 
to a defined mean wave direction, as estimated for a whole record. For the Draupner data the 
mean wave direction is unobtainable since only a single point Eulerian surface elevation time 
history is available. The spreading estimates obtained should be viewed as measurements with 
respect to a local mean wave direction inherent for every individual wave, and this local mean 
direction might well be different for every wave. Thus, it would not be surprising if the local 
spreading estimates developed in this paper would be smaller than orthodox spreading 
measures defined with respect to a common mean direction.  
 
The observed form of the Draupner wave crest at ~15.30 is reasonably consistent with a 
NewWave formulation, allowing for Stokes-type sum harmonics. We estimate the return rate 
of such a crest as ~ 1 in 200,000. Uni-directional wave simulations of Draupner-type extreme 
waves show no significant 3rd order wave-wave interactions, hence the return rate of the large 
wave may be a robust estimate. However, the measured wave is slightly more localised than 
the NewWave model suggests. This may be a feature of the very high and steep crest form. In 
some ways, the local detail of the Draupner wave is reminiscent of the ‘freak’ wave resulting 
from modulational instability of a Stokes wave train as modelled with a highly accurate 
computational scheme by Dyachenko and Zakharov (2001). 
 
One dramatic and unique characteristic of the Draupner wave is a relatively small but robust 
set-up rather than a set-down. We have no explanation for this. All other, admittedly smaller, 
large waves are associated with a local set-down. 
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