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1. INTRODUCTION 

Environmental design criteria for offshore facilities have inherent uncertainties. These uncertainties are a 
function of climate variability in time, space and storm peak direction and track. The quality of estimation 
of design criteria is further dependent on data sample size. 

In a previous study (Elsinghorst et al., 1998), application of Generalised Pareto modelling to estimation of 

North Sea storm severity is reported for storms with return periods of 100 to 500 years based on NESS 

hindcast data. The study consisted of the following elements. The tail distribution of storm severity was 

modelled and magnitudes of extreme events with long return periods estimated. Uncertainty of estimates 

was quantified using a bootstrapping approach. Finally, bias and coverage for estimates of uncertainty were 

quantified by simulation study.  

Site averaging can be used to increase the sample size for modelling, and to account for randomness of 

storm track, in hurricane-dominated regions (Forristall et al., 1991). However, hurricane data from even 

quite largely separated locations are highly correlated. Thus careful quantification of uncertainty of 

parameter estimates and extreme quantiles is necessary, accommodating this dependency structure. 

Jonathan and Ewans (2006) adopt a bootstrapping approach to calculate interval estimates for GPD model 

parameters and extreme quantiles to account for spatial dependence of extremes when site-averaging is 

used. 

The inherent directionality of metocean data is the subject of this paper. In most regions, but particularly 

hurricane-dominated regions (e.g. Gulf of Mexico), and in regions where extra-tropical storms prevail (e.g. 

Northern North Sea), the extremal properties of storms are also highly dependent on storm peak direction. 
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Accordingly, sea state design criteria for offshore facilities are frequently provided by direction, in order to 

optimise engineering facilities for the directional environment. For example, it is typical for return-period 

values of the significant wave height to be specified for each of eight 45° sectors in addition to the omni-

directional case. However, debate continues (e.g. Forristall, 2004) on how these should be derived in a 

consistent way. This is addressed in this paper and a method for developing criteria for a directional 

environment is proposed. 

Theory and application of extreme value modelling is summarised, for example, by Kotz and Nadarajah 

(2000) and Reiss and Thomas (2001). The former authors provide an interesting overview of applications 

including those of Coles, Tawn and co-workers. For example, Coles and Walshaw (1994) model extremal 

properties of wind speeds as a function of their direction, accounting during fitting for angular dependency 

structure, by inflating standard errors for parameter estimates. Robinson and Tawn (1997) apply a Fourier 

model to characterise the extremal behaviour of sea currents. Coles and Powell (1996) discuss a Bayesian 

approach to extreme value estimation using data from multiple locations. Coles and Casson (1998), Casson 

and Coles (1999) present spatial models for extremes. Coles and Tawn (1996, 2005) discuss the estimation 

of predictive distributions (for quantities such as ), which incorporate uncertainties in model 

parameters. 

100SH

The paper is arranged as follows. In section 2, we introduce the GOMOS hindcast data motivating the 

investigation, illustrating some key features. In section 3, an outline of the Generalised Pareto Distribution 

(GPD) used to characterise the extreme value behaviour of the data is given. We also present a directional 

model for the parameters of the GPD distribution, and outline the application of maximum likelihood to 

estimate the paremeters of the directional model, and their uncertainties. Further detail of the maximum 

likelihood estimation is given as in Appendix A. We then apply the directional model to the GOMOS data. 

In section 4, we extend the model to estimate the distributional properties of the 100-year significant wave 

height  and illustrate our findings using GOMOS. In section 5, we discuss the estimation of design 

criteria in the presence of directional dependence, and evaluate implications for designs at GOMOS. In 

section 6, we summarise findings and make suggestions and recommendations for future studies. 

100SH

2. DATA 

The data examined are significant wave height, H , values from the proprietary GOMOS Gulf of Mexico 

hindcast Study (Oceanweather, 2005), for the period September 1900 to September 2005 inclusive, at 30-

minute intervals. For a typical Gulf of Mexico location, we selected 120 grid points arranged on a 15 x 8 

rectangular lattice with spacing with 0.125˚ (14 km). For each storm period for each grid point, we isolated 

storm peak significant wave height, H , for modelling purposes, together with the corresponding wave 

direction at storm peak H , henceforth referred to as storm peak direction. 

S

sp
S

S

Page 2 of 31 



Figure 1 shows H  as a function of storm peak direction for all locations. Storm peak direction is defined 

clockwise from the North. It is apparent from the figure that storms are more frequent in the directional 

sector 

sp
S

[ ]0,180 , which also contains the highest values of . Storms are relatively infrequent in sp
SH

[ ]270,360 . Inset in Figure 1 is the corresponding data for a single central location. Figure 2 illustrates the 

strength of dependence between values of  at diagonally opposite grid locations, and also the 

dependence between storm peak directions at those locations. 
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Figure 1. Storm peak significant wave height H  above a threshold of 2.5m as a function of 

direction for all locations. Inset:  by direction for a single central location. 
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S
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We note at this point that storm events do not correspond to a single wave direction only. Indeed, 30-

minute sea states for a given storm event extend over a wide range of wave directions in general. 

Nevertheless, we characterise a storm in terms of its storm peak significant wave height, H  and storm 

peak direction, for the purposes of extreme value analysis in the peak over threshold sense. However, in 

estimating directional design criteria, we also account for the influence of storms over their full range of 

sea states and wave directions, as will be described further in section 4 below. 

sp
S
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Figure 2. Scatter plot to illustrate dependence of storm peak significant wave height  and storm 
peak direction for diagonally opposite locations, approximately 130 km apart. 
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3. MODELLING EXTREMAL PROPERTIES INCORPORATING DIRECTIONALITY 

Suppose that we have data for storm peak significant wave heights { } 1
n
i iX =  and corresponding storm peak 

directions { } 1
n
i iθ =  for a set of n  storm events { } 1

n
i iE =  occurring in some period P . We assume, for any 

storm, that the distribution of extreme wave heights above a certain threshold u  can be described using the 

Generalised Pareto Distribution (GPD) with cumulative distribution function  given by: 

0
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where  is the shape parameter or tail index,  is the scale, and  (assumed constant with respect 

to direction) is the threshold. We note that shape and scale parameters are functions of storm peak 

direction. The corresponding density function is: 

( )iγ θ ( )iσ θ u

 ( ) ( )
( )
( )

( )
( )
1

1

| ,
1

; , 1 i
X u

i i

i
f x x ui i

γ θ
θ

γ θ
γ σ

σ θ σ θ

− −
 

= + −  
 

 for x u   , 0σ> >

Pickands (1975) has shown, for sufficiently high threshold u , that the GPD provides a good representation 

for any function , in the sense that: | ,XF i iθ u
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where  is the upper tail point of . ox | ,X uF i iθ

In common with other authors (e.g. Robinson and Tawn, 1997), since we expect the extreme value 

parameters  and σ  to vary smoothly with direction, we characterise their directional dependence using a 

Fourier series expansion , where t , , with a  for , and a  for 

. We set A , a  since this parameter is indeterminate.  is the order of the Fourier model, 

 corresponding to a constant model. Thus, for example, we refer to the cases  and p  as 

first- and third- order directional models respectively. 
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We estimate the parameters , , b , k  using maximum likelihood estimation. 

The likelihood of a data sample is given by: 
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The negative log likelihood is given by: 
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Maximum likelihood (or minimum negative log likelihood) estimates are found by setting the partial 

derivatives of l  with respect to the parameter set A , , b ,  equal to 0 . For 

further details, see Appendix A. Similarly, the asymptotic covariance matrix of the parameter estimates is 

given by the inverse I  of the information matrix, 

abk 1,2a = 1,2= 1,2,...,k =

1− ∂
∂
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XI E . Asymptotic variances for 

functions of the parameters, e.g. , can be derived also from I  (see Appendix A). Asymptotic 

variances for parameter estimates facilitate a studentised bootstrapping resampling analysis (see, e.g. 

Jonathan and Ewans, 2006), which allows reliable interval estimates for parameters to be calculated. 

100SH

The first-order directional model, when applied to the GOMOS data for all 120 locations, yields the 

functional relationships: 
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γ =   − +  ( ) ( )θ θ+0.13 0.24 cos 0.24 sin

( ) ( )σ θ= − +1.97 1.04 cos 0.14 sin θ  

for  and σ  with direction, illustrated in Figure 3 with the  data for comparison. Figure 4 compares 

the functional forms of  and  with storm peak direction for first-, second- and third-order models. Also 

given in Figure 4 are estimates for  and σ  found independently using data from consecutive directional 

sectors of width 45 . It is clear that the directional model produces smooth estimates that are broadly 

consistent with the independent fits. From Figure 4 we judge that the first-order model adequately 

characterises the variability of extreme value parameters with storm peak direction, whilst noting that more 

formal model selection procedures might be useful in practice. Clearly the most appropriate model order 

depends on the application; higher order models would be necessary for locations with more complex 

directional dependence.  

γ SP
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γ σ

γ

 

Figure 3. First-order directional model applied to GOMOS data for all locations. Figure shows H  
and estimated  and σ  as a function of storm peak direction. 
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Figure 4. First-, second- and third-order directional models for GOMOS data for all locations. Also 
shown are independent estimates for  and  calculated using data from consecutive directional 
sectors of width . The corresponding zero-order (constant) estimates for  and  are 
respectively −  and 2. . 
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Given the Fourier series form  with a  for , and a  for , we can write ( )
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recalling that A . Further, as outlined in Appendix A, 
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 can be estimated for any sample of data. In particular, if we assume first-order 

models for each of  and ,  will be a  matrix. From the inverse of the information matrix, we 

obtain estimates for the asymptotic variances of the parameters { } . Similarly, asymptotic 

variances for ,  can be estimated given knowledge of the partial derivatives of the ,  with respect to 

the . We refer the reader to Appendix A for further discussion. Using these expressions, asymptotic 

95% confidence bands for  and σ  with direction are given in Figure 5. The lines representing the 

asymptotic limits are barely distinguishable from those representing the maximum likelihood estimates. 
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Due to the spatial dependence structure of the data, it has been shown that bootstrapping can be used to 

estimate more realistic interval estimates for model parameters. Bootstrapping is a standard approach in 

statistics and involves estimating parameter uncertainty by resampling the original data sample (e.g. Hall, 

1988, Efron and Tibshirani, 1993, Davison and Hinkley, 1997). Coles and Simiu (2003) discuss a number 

of difficulties in applying bootstrapping for estimation of uncertainties in extreme value analysis, including 

the tendency to underestimate extreme quantiles. Nevertheless, they conclude that bootstrapping, carefully 

applied, can be used reliably to give realistic estimates for parameter uncertainties. Heffernan and Tawn 

(2004) report a conditional approach for extreme value analysis applicable to higher dimensional problems, 

also incorporating bootstrapping, in which dependence structure is characterised using rank correlation. 

Using the studentised non-parametric bootstrap discussed by Jonathan & Ewans (2006), we have estimated 

bootstrap 95% confidence intervals for the parameters { } ,  and σ . In this approach to 

bootstrapping, we are careful to preserve the dependency structure between locations; data for all locations 

for any given storm is treated as a single multivariate observation for resampling. Bootstrap 95% intervals 

for the , assuming first order models for each of γ  and σ , based on 500 storm-wise resamples of the 

 data are given in Table 1. Corresponding bootstrap 95% intervals for  and  are shown in Figure 5. 

2,2,
1, 1, 0
p

abk a b kA = = = γ

γ

abkA

SP
SH σ

Table 1: Point and interval estimates for first-order model parameters 

Parameter Estimate Asymptotic 95% Bootstrap 95% 

110A  -0.13 (-0.14,-0.13) (-0.25,0.06) 

111A  0.24 (0.23,0.25) (0.10,0.48) 

121A  0.24 (0.24,0.25) (0.09,0.44) 

210A  1.97 (1.95,1.98) (1.59,2.30) 

211A  -1.04 (-1.05,-1.02) (-1.76,-0.60) 

221A  0.14 (0.12,0.15) (-0.31,0.62) 

Some technical details of the bootstrapping analysis need to be noted. For each of the 500 bootstrap 

resamples, a likelihood ratio test was performed to check that the first-order model (for both of  and  ) 

could be justified over the corresponding constant model. Specifically, twice the difference of the negative 

log-likelihoods (known as "deviance") is compared with the critical value of the  distribution with 4  

degrees of freedom (since the first order model has  more parameters that the constant model). 

Approximately  resamples for which the first-order model was rejected were ignored for estimation of 

4

20

γ σ

2χ
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asymptotics. Further, as can be seen from Figure 5, the value of γ  approaches  for some storm peak 

directions, causing numerical difficulties (because of the requirement of  ) for estimation of 

asymptotic variances. To overcome this difficulty, we replace the term in (  in the expressions for 

elements of the information matrix by  for all . Initial checks suggest that this approximation 

is reasonable. Appendix B confirms that the approximation provides interval estimates with reasonable 

coverage probabilities. 

0.5−

γ

0.2 0.4γ < −

0.5> −

1 2γ)+

σ

iθ

( )i

SH

)i

From the table and the figure it can be seen that asymptotic statistics greatly underestimate the uncertainties 

of parameters. Bootstrapping provides more realistic interval estimates. The bootstrap 95% interval for  is 

always positive for some storm peak directions, and always negative for others, demonstrating the presence 

of directionally-dependent extremes. 

γ

 

Figure 5. Point and interval estimates for γ  and with storm peak direction. 

4. ESTIMATION OF OMNI-DIRECTIONAL EXTREMES 

We assume that, given any storm peak direction, , values of storm peak  above threshold u  follow a 

GPD distribution with parameters  and σ θ  as introduced in section 3 above. We assume that the (γ θ
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occurrences of storms are independent Poisson events with expectation 1
0P

 per annum per storm, where 

 is the period of hindcast data. We further assume that the empirical distribution of storm peak directions 

given by the set 

0P

{ } 1
n
i iθ =  provides an adequate representation of the distribution of storm peak directions for 

any period P  of interest; that is, storm peak directions for any P  are restricted to the set { } 1
n
i iθ = . 

Robinson and Tawn (1997) and Chavez-Demoulin and Davison (2005) present a series of models of 

varying complexity appropriate for the current situation also. 

)0,90

iρ

90,

i

ρ

Using the directional model introduced above, we now set out to estimate the cumulative distribution 

function of the maximum storm H  for an arbitrary directional sector S , in the peak over threshold sense, 

corresponding to some period  of time. To achieve this, we consider the influence of storm events, the 

storm peak directions of which correspond to the sector S . However, we also must consider the influence 

of all other storm events on the sector, even though their storm peak directions fall outside S , since these 

storms may also include 30-minute sea states, the wave directions of which correspond to S . This effect is 

illustrated in Figure 6, which shows H  versus wave direction for consecutive 30-minute sea states of a 

typical storm at a typical location. 

S

P

S

From Figure 6, we see that H  corresponds to a wave direction of approximately 140º, but that sea states 

extend over a wide range of wave directions. Suppose now that we are interested in establishing design 

criteria for the first directional quadrant 

sp
S

[ )0,90 . We quantify the contribution of the storm to sector [  

in terms of the maximum value of sea state  (expressed as a fraction of H  ) for any sea state whose 

wave direction falls within the sector. In general, we refer to this quantity as the directional influence 

 of storm event   on sector S . Thus, for the storm in Figure 6, the directional 

influence of the storm on sector 

SH

n

sp
S

( )S iE 1,2,...,i =

[ )0,90  is approximately 0.18. Similarly, the directional influence of the 

storm on quadrant [ )180  is unity (since storm peak direction corresponds to this sector). The directional 

influence of the storm on quadrant [ ), 360270  is zero, since no sea states of the storm fall in this sector. 

Directional influence therefore quantifies the maximum contribution of a storm to a directional sector as a 

fraction of storm peak H . From the GOMOS data, we can extract values for directional influence to 

facilitate estimation of maximum storm H  for any storm-sector combination of interest. We characterise 

the extremal behaviour of X , the value of H  for any storm event E , given its storm peak direction, 

using the directional model from above, where X  is GPD-distributed. The contribution of this storm event 

to any directional sector S  is quantified in terms of the random variable , namely the maximum 

contribution of the storm to the sector observed in the 105 years of GOMOS data. Since the storm events 

S

S

i
sp
S

i

( )i S Xi

Page 10 of 31 



{ } 1
n
i iE =  are statistically independent, we can proceed to calculate the statistical properties of the maximum 

storm H  in an arbitrary sector S  as follows. S

sp
S

SH

maxX SF

maxF S |x

iM

 

 

Figure 6: Variation of SH H  with wave direction (solid) for 30-minute sea states of a typical 

storm. sp  corresponds to a storm peak direction of approximately 140°, but sea states extend over 
a wide range of wave directions. Also shown (dashed) is the directional influence of the storm on each 
of the four quadrants. 

In any period P , the cumulative distribution function of the maximum storm  in sector S  is given by 

 : 

SH

( ) [ ]( ) ( )( ) ( )max
1 0

, 1,2,..., | ,
n

X S i i i i i
i k

x P X X u i i n P S X x X u M k P M kρ
∞

= =

 = ≤ > ∀ = ∏ ∑ ≤ > = = 
 

∈

  

i

where  is the number of occurrences of storm i  in the period, the expected value of which is 
0
P
P=m  

for all storms. Recalling that  is Poisson distributed, we have: iM

Page 11 of 31 



( )
( )
( ) ( )

( )

( )
( ) ( )

( )

( )
( ) ( )

γ θ

γ θ

γ θ
σ θ ρ

γ θ
σ θ ρ

γ θ
σ θ ρ

− −∞

= =

−

=

−

=

       = ∏ ∑ − + −          
   

  
     = ∏ − + −          

   

  
= − ∑ + −      

1

max
1 0

1

1

1

1

1 1
!

exp 1

exp 1

k

m kn i
X

i k i i

n i

i i i

n i

i i i

ix e
F x uS S k

ix
m u

S

x
m u

S

( )

m

γ θ
 
 
 
 
 

i

 

Note, in particular, that if this sector was actually homogeneous so that  ,  , and 

further if    then this expression would reduce to the standard GEV 

( )i Sγ θ γ= ( )σ θ σ=i S

( ) 1i Sρ = i∀
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  , where mn  is the expected number of storms in the sector in period 

 , n  being the number of storms in S  in  (see, e.g. Coles and Walshaw (1994)). Leadbetter et al 

(1983) give the theoretical framework within which modelling maxima using GEV are valid.” 

Once the values of ( ) ( ){ } 1
,

n
i i i

γ θ σ θ
=

 have been estimated, the distribution of , the P  year 

maximum, can be estimated by setting the expression for  for any quantile q , 

100SH 100=

( )maxXF xS = q [ ]0,1

MP

q ∈

100S

, 

and setting P = 100 years, then solving for  for an arbitrary sector. The most probable value H  of 

 can be estimated by setting the second derivative of F  to zero and solving for x . 

x

100SH ( )maxX xS

We can calculate sector maxima cumulants for the four quadrants ( [ )0,90 , [ )90,180 , [ )180,270  and 

[ )270, 360  ) and for the omni-directional (i.e. for sector [ )0,360  ) for the GOMOS data. The resulting 

cumulative distribution functions for  are given in Figure 7 for the directional model (using first-

order models for each of  and σ  ). As would be expected, given that we have observed that directional 

effects are important for extreme storm behaviour for these data, there are considerable differences between 

sector cumulants. Sectors 

100SH

γ

[ )900,  and [ )90,180  show much longer, heavier tails. 
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Figure 7: Cumulative distribution functions for sector and omni-directional  for GOMOS, 
using a first-order directional model for each of extreme value shape and scale. 

100SH

For comparison, we also give the corresponding cumulants (Figure 8) based on the direction-independent 

EV models (assuming γ  and  constant and independent of storm peak direction). Cumulants based on the 

directional EV model more accurately describe the data, notwithstanding the uncertainties in EV model 

parameters already discussed. In particular we note that the omni-directional cumulant based on the 

directional model has a longer and heavier right hand tail, indicating that large values of H  are more 

likely than we might anticipate were we to base our beliefs on EV models which ignore directionality. 

σ

100S
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Figure 8: Cumulative distribution functions for sector and omni-directional  for GOMOS, 
using a directional-independent model for each of extreme value shape and scale. The omni-
directional cumulant in particular is lighter tailed than the correspond cumulant in Figure 7. 

100SH

5. DESIGN CRITERIA FROM DIRECTIONAL EXTREMES 

In this section, we consider the specification of design criteria for directional extremes. First, we introduce 

three different approaches to directional design, all consistent with the same given omni-directional design 

criterion, and discuss their relative characteristics. We introduce a simple 2-sector application for 

illustrative purposes. Then we propose a risk-cost optimisation criterion to aid the selection of a balanced 

set of directional design criteria, accommodating both design risk and cost. The characteristics of the risk-

cost optimised design are illustrated for the 2-sector problem. Then we calculate directional design criterion 

for the GOMOS location using each of the three directional design approaches, for both the directional and 

direction-independent extreme value models discussed earlier. 

Suppose we have a location at which occurrences of extremes storms can be partitioned with respect to 

direction into m  directional sectors. Within each directional sector, extremes exhibit identical behaviour. 

But the extreme value characteristics of the sectors are different. We wish to establish appropriate design 

criteria for each sector consistent with a given omni-directional non-exceedence probability q  at 

the 100-year return level. 

100Omni
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Now consider the cumulative probability function P X  for the maximum observed 

during the 100-year period in any sector X . Considering only the storm peak sea states, then 

( max100Omni x≤

ni

)

max100Om
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≤ = ≤∏

where  is the cumulative probability function for the maximum observed in the sectors ( )max100SP X xj ≤
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m
i iS =  in a 100 year period. 

If design criteria are specified in terms of an omni-directional non-exceedence probability q , we 

can immediately calculate the corresponding 100 year design H  by inverting the equation 

 to obtain x . However, specification of q  does 

not allow us to determine unique values for sector design H . All that the omni-directional specification 

does is impose the constraint q , where q  are non-exceedence probabilities for the 

sectors 

100Omni

100Omni

S

(100 max100 100Omni Omni Omniq P X x= ≤

100

m

Omni
i=

= ∏

) 100Omni

S

100100
1

Siq Si

{ } 1
m
i iS = . That is, the product of sector non-exceedence probabilities must equal the omni-

directional equivalent. This constraint leaves us free to specify any set of sector design H  values S

{ }100 1

m
S i

x i = 100 maxX= such that q P    and q . An infinite 

number of solutions exist, but it is instructive to consider a number of interesting cases. 

( )00Sx≤ ∀100S Si i 1 i i 100 100
1

m

Omni
i=

= ∏ Siq

(1) Suppose that all sectors but one exhibited extreme value behaviour with negative tail index, γ . For each 

of these sectors, an upper limit for the value of storm peak H  therefore exists. It would therefore be 

possible to set the sector design values for all these sectors to their maximum value. The corresponding 

non-exceedence probabilities would all be unity. Then, q q , were S  is the 

remaining sector with positive index. In this case, the omni-directional non-exceedence probability would 

correspond to that of the most extreme sector. 

S

Omni100 100 1001

m

S Si
qi=

= ∏ = ∗ ∗

(2) Another choice would be to design all sectors to the omni-directional design H , . Since 

 for any value of , and for x  in particular, we 

set   ∀  thereby ensuring that q  is satisfied. We 

refer to this design as the "omni-directional H  " design. Figure 9 illustrates this method of selection of 

S

Omni

100S

100Omnix

q i

( ) (max100 max100
1

m

Omni S
i

P X x P X xi=
≤ = ∏ ≤

(100 max100 100S S Omniq P X xi i= ≤ i

100S

)

)

x 100

1

m

i=
= ∏100Omni
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sector design criteria in the case m  for ease of discussion. In this example, sector S1 is more severe 

that sector S2. Naturally, the sector design non-exceedence probabilities are both larger than the omni-

directional value, but we note that the non-exceedence probability for the more severe sector (S1) is less 

than that for the less severe sector (S2). It is clear in general that sector non-exceedence probabilities 

2=

{ }100 1

m
S i

q i =

100Omni
i

 will be very different to each other. Indeed, the non-exceedence probabilities for the most 

severe sectors will always be lower that those for less severe sectors. But even for the most severe sector, 

sector non-exceedence probability will always be at least as large as the omni-directional value. 

)

( ln

x

1
1

ln m
m = −

x

100

(3) A third possibility is to maximise the value of the minimum sector non-exceedence probability. This is 

achieved by setting the same non-exceedence probability for each sector. In this case we have 

 where (100 100
1

m
S Sq q q

=
= ∏ = (100 100S Omni m=

1

γ

q q  is the common sector non-exceedence 

probability. We refer to this design as the "equal sector non-exceedence" design. Figure 10 illustrates the 

approach in the case m . Now we impose more demanding non-exceedence requirements equally 

across all sectors, including the most severe. Note that, for any homogeneous sample size n  corresponding 

to time period P  years, from a generalised Pareto distribution with parameters  and σ , we have 

2=

o

( ))
1

1nP
P x u q
o

γ
σ

γ−
+ − = −

q

 which defines the relationship between the P  year non-exceedence 

probability  and extreme quantile . Setting the extreme 100 year quantile using a non-exceedence 

probability 
1
mq  (so that  

m
)

 ( )( )100
1

1n
P x u q q
o

γ
σ

γ−
+ − = −

8=

 ) is equivalent to a non-exceedence probability q  at the 

100m -year level. Thus, this approach sets 100m -year return levels for each directional sector. 

Specifically, in the case m  we would set 800-year return levels in each sector. 

ln

We see that the particular choices of { }100 1

m
S ii =

100S Sx x=

100Si

 discussed above are all valid, but have very different 

characteristics and design consequences. We might judge, if we were to follow the third approach above, 

that setting the most extreme sector at the 100m -year level was over-conservative. At the same time, we 

might like to introduce more conservatism for the most severe sector than that produced by the second 

approach above. For this reason, we might consider a risk-cost basis for optimisation of directional design 

criteria. If c x  is the cost of designing to a storm peak H  of  metres, then the overall cost of design 

will be RC , where  is the sector storm peak H  corresponding 

to sector non-exceedence probability q . The optimal design is that which mimises  subject to 

( )

m

i=
= ∑

S

q

x

( 100
1

Sc x i ) )Si( 100i i S

RC
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100 100
1

m

Omni S
i

q i=
= ∏

(10) 1=

q  where q  is some quantile (typically ) of the omni-directional 

cumulative distribution. 

100Omni

0.01

≥ 0.5

For our two-sector problem, Figure 11 illustrates risk-cost optimisation. For simplicity, we assume that the 

cost of construction for either sector takes the form c x , for x  in metres, where for convenience 

we set c , so that K . We further set q . We see that optimal risk-cost design 

corresponds to minimum total design cost given q . The optimal risk-cost design (labelled 

"A") is a compromise between designing to the omni-directional  in all sectors (labelled "B"), and 

designing to equal non-exceedence probabilities in each sector (labelled "C"). 

( ) 2Kx=

100Omni =

100 0.5Omni =

= 0.5

SH

 

Figure 9: Designing to median omni-directional H , for the two-sector problem. The equivalent 
sector non-exceedence probability is smaller for the more severe sector. 

100S
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Figure 10: Designing to equal non-exceedence probabilities for each sector, illustrated for the two-
sector problem. The equivalent sector H  for the more severe sector is larger than the omni-
directional value. 

S
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Figure 11: Directional design criteria optimising risk-cost for the two-sector problem. Shown, as a 
function of non-exceedence probability for sector S1, are: total design cost (solid line, with ordinate 
on left hand side) and corresponding non-exceedence probability for sector S2 (dashed line, with 
ordinate on right hand side). The optimal design (labelled "A") minimises total design cost for a risk 
level quantified in terms of a non-exceedence probability for H  of q . Also shown 
(in grey) are the "omni-directional H  " design (labelled "B") and the "equal sector non-
exceedence" design (labelled "C"). 

100S 100 0.5Omni =

100S
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Table 2: Design criteria based on median omni-directional H   100S

Sector Angle Risk-cost 
optimal   

Omni-
directional 

 100SH
  

Equal sector 
non-

exceedence 
  

Directional 
model           

  RC  100Sx i 100Sq i RC  100Sx i 100Sq i RC  100Sx i 100Sq i

S1 [0,90) 8.78 18.03 0.75 9.73 15.60 0.59 9.29 20.20 0.84 

S2 [90,180)  17.40 0.81  15.60 0.69  17.90 0.84 

S3 [180,270)  11.44 0.91  15.60 0.98  10.30 0.84 

S4 [270,360)  10.90 0.90  15.60 0.98  9.70 0.84 

Direction-
independent 

model 
          

  RC  100Sx i 100Sq i RC  100Sx i 100Sq i RC  100Sx i 100Sq i

S1 [0,90) 7.56 15.00 0.82 7.84 14.00 0.72 7.59 15.20 0.84 

S2 [90,180)  15.40 0.82  14.00 0.66  15.70 0.84 

S3 [180,270)  13.41 0.84  14.00 0.88  13.40 0.84 

S4 [270,360)  10.67 0.89  14.00 0.98  10.10 0.84 

 

Table 2 and Table 3 present design criteria from the GOMOS data set, for design to non-exceedence 

probabilities of 0.5 and 0.7 for omni-directional H , based on three design approaches and two extreme 

value models. The corresponding values for an annual probability of exceedance of 0.01 are given in 

Appendix B. Looking at Table 2 first, comparing the top and bottom halves of the table, we see that design 

values based on the directional model are larger that their counterparts obtained by ignoring the directional 

dependence of storms. This indicates that ignoring directionality results in underestimation of extreme 

storm behaviour. Results also illustrate the different characteristics of the three design approaches used. 

The risk-cost optimal design avoids the more extreme properties of the other design methods, such as the 

large range of values for 

100S

{ }100 11
m

S i
q

=
 present for design to omni-directional H , and the large range of 

values for 

100S

{ }100 11
m

S i
x

=
 evident for design to equal sector non-exceedences. Taking the risk-cost optimal 
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design based on the directional EV model to be most preferrable, we conclude that we need to design for 

18m in sector S1, 17.4m in S2, but only 11.4m and 10.9m respectively in sectors S3 and S4. 

Table 3: Design criteria based on omni-directional  non-exceedence of 0.7 100SH

Sector Angle Risk-cost 
optimal   

Omni-
directional 

 100SH
  

Equal sector 
non-

exceedence 
  

Directional 
model           

  RC  100Sx i 100Sq i RC  100Sx i 100Sq i RC  100Sx i 100Sq i

S1 [0,90) 11.55 20.97 0.86 12.82 17.90 0.74 12.20 23.40 0.92 

S2 [90,180)  19.67 0.90  17.90 0.84  20.20 0.92 

S3 [180,270)  12.92 0.95  17.90 0.99  11.60 0.92 

S4 [270,360)  12.70 0.95  17.90 0.99  11.40 0.91 

Direction-
independent 

model 
          

  RC  100Sx i 100Sq i RC  100Sx i 100Sq i RC  100Sx i 100Sq i

S1 [0,90) 8.99 16.30 0.91 9.36 15.30 0.85 9.03 16.50 0.91 

S2 [90,180)  16.70 0.90  15.30 0.81  17.00 0.92 

S3 [180,270)  14.70 0.91  15.30 0.94  14.70 0.91 

S4 [270,360)  11.76 0.94  15.30 0.99  11.20 0.91 

 

In addition to reflecting the trends of the previous table, Table 3 quantifies the extent to which basing 

design on H  non-exceedence probability of 0.7 increases design values for all models and design 

methods, and for the chosen risk-cost optimal design based on the directional EV model in particular. 

100S

6. CONCLUSIONS AND RECOMMENDATIONS 

Directional metocean data allow the possibility for directionality to be taken into account in the design of 

offshore structures, but care must be taken to ensure that models and design criteria are developed and 

applied consistently. 
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A directional extremes model (a Fourier series expansion here) allows directionally consistent extreme 

values to be developed, with obvious applicability for engineering design. There is a strong general case in 

favour of adopting a directional extreme value model to storm peak H  data unless it can be demonstrated 

statistically that a direction-free model is no less appropriate. For the current GOMOS hindcast sample, a 

directional GPD model explains the data significantly better than the conventional (direction-free) model. 

A first-order Fourier series model was found adequate for the GOMOS data analysed, but we expect that 

higher order models would be necessary for locations with more complex directionality. 

S

It is important to consider the directionality of sea states when developing extremal criteria. Omni-

directional extreme values derived from a directional model can be significantly different from a direction-

independent derivation, which ignores the distribution variability of the data with direction. For example, 

when the directional dependence of the GOMOS data is modeled with a Fourier series expansion, the omni-

directional H  is heavier tailed than that derived from a direction-independent approach, indicating that 

large values of are more likely than we might anticipate were we to base our beliefs on EV models 

which ignore directionality. 

100S

SH 100

In this work, we model extremal properties of storm peak H  as a function of wave direction at storm 

peak, in the peak over threshold sense, taking each storm event to be independent statistically for a given 

location. We therefore ignore all but the most severe 30-minute sea state of the storm for extreme value 

analysis. In estimating maximum storm  for a directional sector, we accommodate the effects of all sea 

states of all storms whose wave directions fall within that directional sector, regardless of the wave 

direction at storm peak, by quantifying the directional influence of storms on the directional sector directly 

from the GOMOS data. 

S

SH

The rate of occurrence of storms peaks is dependent on storm peak direction in general. Hence the 

distribution of H  will have storm peak directional dependence in general, even when the extremal 

value characteristics (e.g GPD shape and scale) of storm peak H  are independent of storm peak direction. 

The evidence from the current GOMOS data is that the rate of occurrence of storms shows strong storm 

peak directional dependence. 

100S

S

The process of setting criteria for a number of directional sectors for a given omni-directional non-

exceedance probability is not unique. Nevertheless, directional design criteria provide more specific 

estimates of extreme offshore conditions enabling the risk associated with a design to be minimised given 

available resources. We propose a risk-cost basis as an objective method for optimizing directional criteria, 

while preserving overall reliability. The risk-cost optimal design avoids more extreme properties of the 

other design methods, such as the large range of values of sector non-exceedance probabilities in the design 

to omni-directional value, or the large range of sector extremes in the design to equal sector non-
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exceedances. 
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APPENDIX A: MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS FOR DIRECTIONAL 

MODEL 

The negative log likelihood  l   is given by: 

 l  , where  
1

n

i
i=

= ∑ l (1
log 1 log 1 i

i i i
i i

γσ
γ σ

  
= + + + −  

  
)X




il  , and  γ γ  ,  σ σ  ,  

 .Thus: 

u ( )i θ= ( )i iθ=

1,2,...,=i n

 ( )2
1 1

log 1 1i
i i

i ii

l
G

G
γ

γ γ

  ∂ = − − + −  ∂   
   where  ( )1 i

i i
i

γ
σ

= + −G X   u

 1 1 1
1i

i i i i i

l

Gσ γ σ σ γ
 ∂

= − + + ∂  

1

i
  

Using the chain rule for partial differentiation, we have: 

 (
1

n
l

ai b iA i
U t k

abk
θ∂

∂ =
= ∑ )  ,  a  ,  b  ,    where  1,2= 1,2= 0,1,...,k p= l

ai
i
γ

∂
∂=U  for  a  , and  1= li

σ
∂
∂  for  

 , recalling that  A   Maximum likelihood estimates are obtained by setting  2a = 20 0a 0l
Aabk

∂
∂ =    

  and solving. , ,a b∀ k

Second derivatives of the likelihood can be found in a similar fashion. First, expressions for  

2l
A Aabk αβκ

∂
∂ ∂

 
 
 

     are found by applying the chain rule to the expressions above. Then 

expectations are taken. Using the identities  

, , , , ,a b k α β κ∀

( ) 1
1

1

r

X u
r

γ
σ γ

−  + − =   +  

( )( ) ( )XE g X g x= ∫

E X  for  1  , (which 

can be evaluated directly using   ) and  

0rγ+ >

( )X x dxf

( )
r

u
   + −     

( ) (log 1 1r
XE X

γ γ Γ
σ

= − +  )r   for integer   , (which can be evaluated directly, noting 

e.g. the similarity the integrand with the density of the gamma random variable), when   , 

these expressions reduce to the form: 

r

( )~ ,D γ σX GP

 ( ) (
1

2 n Bl
X bCA A i

a i
iabk β
α θ κθαβκ

∂
∂ ∂ =

  = ∑  
)i ik t , , , , ,a b k α β κE t    ∀   
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where  B a   

( )
( )( )

( )

22 , 1

1 , 2,

, 2

i

a i i

i

a

a

α

σ θ α

γ θ α

σ θ α

 = =
  = + = = 
 

= =  

1

iand  C      ( ) ( )( ) ( )( )2 1 1 2i i iσ θ γ θ γ θ= + + i∀

The asymptotic variances for parameter estimates can be read from the asymptotic covariance matrix for 

parameter estimates, given by the inverse  I   of the information matrix  1− 2l
X A Aabk αβκ

∂
∂ ∂

  =   
  

I E  . 

Moreover, the asymptotic variance of a function  { }( abk )g A   of the parameters is given by  

{ }( )( ) 1g
A abk A Avar g A I

abk abk

′∂ −
∂ ∂
  =     

g∂ 


  where  g
Aabk
∂

∂
 
  

  represents a vector with elements  

{ }g
Aabk
∂

∂ . 

APPENDIX B. COVERAGE PERFORMANCE OF BOOTSTRAP INTERVAL ESTIMATES FOR 

PARAMETERS OF CYCLIC MODEL 

The coverage performance of bootstrap interval estimates for the parameters of the first order cyclic models 

for extreme value shape and scale parameters was evaluated for three different cases (Independent (I), 

Dependent (D) and Resample (R)), when the true data model is known. The main motivation of the study 

was to ensure that bootstrap interval estimates are realistic for different spatial dependency between 

locations. 

We performed the following simulation study. Data samples of size 315 storms for 120 locations were 

generated using the first order cyclic model (for each of extreme value shape and scale) with parameters 

estimated using the true GOMOS data (and given in Table 1) for each location, for three different 

situations.  In the first case (Independent), independent data samples were generated for each location. In 

the second case, (Dependent), identical data were used for each location for any given storm. In the third 

case, (Resample), a resample (storm-wise across all locations) of the actual GOMOS data was used. The 

Independent and Dependent cases correspond to limiting dependence structures that we would encounter in 

practice. 

For at least 1000 realisations of the data, 200 bootstrap samples were used to estimate extreme value 

parameter uncertainty. Results are given in Figure B 1 below, in terms of fraction of realisations for which 

the real parameter values of the first order cyclic model fall outside of the bootstrap interval estimate on the 

left and right hand sides. (The actual number of realisations used for each of Independent, Dependent and 

Resample studies was 1000, 1700 and 1500 respectively due to different computational requirements and 
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computing resources available for the different simulations. This will be updated to a fixed number for each 

of Independent, Dependent and Resample in due course). 

Table B 1: Low and high bootstrap confidence interval exceedance probabilities for the Independent 
(I), Dependent (D) and Resample (R) cases 

 
Parameter I:Low I:High D:Low D:High R:Low R:High 

A110 0.09 0.01 0.06 0.04 0.06 0.06 

A111 0.05 0.02 0.06 0.04 0.04 0.12 

A121 0.02 0.06 0.07 0.05 0.05 0.08 

A210 0.01 0.10 0.04 0.05 0.06 0.03 

A211 0.03 0.03 0.05 0.05 0.13 0.02 

A221 0.09 0.02 0.06 0.03 0.07 0.04 

 

In the table, we expect total exceedance probability to be 0.05, since we are using a 95% interval, with 

0.025 exceedance probabilities on each of the left-hand and right-hand sides. Values in Table B 1 confirm 

that the bootstrap confidence interval estimate is performing adequately in all three cases; numbers of 

exceedances are generally consistent with expectation. Figure B 1 and Figure B 2 illustrate low and high 

bootstrap confidence interval exceedance probabilities for extreme value shape and scale as a function of 

storm peak direction. Again, results are broadly consistent with expectation. 

We conclude from these simulation studies that the bootstrap interval estimates for cyclic model 

parameters, and model parameter variability with storm peak direction, are realistic. 
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Figure B 1: Low and high bootstrap confidence interval exceedance probabilities of γ  for the 
Independent (I), Dependent (D) and Resample (R) cases 
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Figure B 2: Low and high bootstrap confidence interval exceedance probabilities of  for the 
Independent (I), Dependent (D) and Resample (R) cases 

σ
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Appendix C. Design criteria based on omni-directional H  non-exceedence of 0.37 
(Annual probability of non-exceedance of 0.99) 

100S

Table C 1 Design criteria based on omni-directional H  non-exceedence of 0.37 100S

Sector Angle Risk-cost 
optimal   

Omni-
directional 

 100SH
  

Equal sector 
non-

exceedence 
  

Directional 
model           

  RC  100Sx i 100Sq i RC  100Sx i 100Sq i RC  100Sx i 100Sq i

S1 [0,90) 7.55 16.60 0.67 8.29 14.40 0.48 8.03 18.60 0.78 

S2 [90,180)  16.20 0.74  14.40 0.56  16.80 0.78 

S3 [180,270)  10.80 0.88  14.40 0.97  9.80 0.78 

S4 [270,360)  10.04 0.86  14.40 0.97  8.90 0.78 

Direction-
independent 

model 
          

  RC  100Sx i 100Sq i RC  100Sx i 100Sq i RC  100Sx i 100Sq i

S1 [0,90) 6.83 14.29 0.76 7.08 13.30 0.63 6.85 14.50 0.78 

S2 [90,180)  14.70 0.75  13.30 0.55  15.00 0. 78

S3 [180,270)  12.70 0.78  13.30 0.83  12.70 0. 78

S4 [270,360)  10.05 0.84  13.30 0.97  9.40 0. 78
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