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 1. INTRODUCTION  
 The focus of this paper is to address a new 
approach for the Fourier analysis of deep-water wave 
trains. The method is intrinsically nonlinear and 
describes a nonlinear Fourier spectrum which 
includes 
(1) The nonlinear superposition of quasi-linear sine 

or Stokes wave components.  
(2) The nonlinear superposition of nonlinear wave 

packets and their space/time dynamics. 
(3) The Stokes wave nonlinearity. 
(4) The influence of the wave/current interaction on 

the nonlinear spectrum. 
 How is it that a nonlinear Fourier approach can 
simultaneously contain all of these features? One 
begins by writing a linear wave equation for the 
envelope of a linear wave train:  

i(ψ t + Cgψ x ) + µψ xx = 0        (1) 
 

where ψ (x,t ) is the complex envelope of the wave 
train, Cg  is the group speed, ωo  is the carrier 
frequency, ko  is the wave number, ωo

2 = gko  is the 
deep-water dispersion relation and µ = −ω o / 8ko

2 . 
This is just about the simplest wave equation 
imaginable. The complex envelope, ψ (x,t ), is related 
to the surface elevation, η(x,t ), by: 
 

η(x,t ) = ψ (x,t )eiko x −iω ot + c.c.     (2) 
 

Because (1) and (2) are linear equations the Fourier 
structure is trivial: The usual linear Fourier transform 
solves (1) for all (Cauchy) initial conditions! So, 
assuming that (1) is true, then (a) modeling of wave 
trains is simple (the FFT algorithm suffices for 
computing the space/time evolution), (b) the Fourier 
analysis of oceanic data is also straightforward using 
the FFT and (c) filtering, computation of transfer 
functions and the computation of power spectra 
follows in a natural way. How can we ever imagine 
doing anything better? We have all the tools for 
understanding how linear waves behave in the 
oceanic environment. Of course (1) is narrow banded, 
but we can always improve this feature to arbitrary 

order by adding additional linear dispersive terms to 
the equation.  

For wind-wave modeling we ordinarily go a step 
farther by introducing a kinetic equation which 
includes nonlinear three, four or five-wave 
interactions and the results have resulted in 
spectacular improvement in predictive capability over 
the last few decades. However wind wave models, 
being based on kinetic equations, filter out coherent 
effects in a nonlinear wave train, i.e. solitary waves, 
soliton packets and unstable packet modes (in the 
Benjamin-Feir sense) tend to be thrown out like the 
baby in the bath water, to use traditional idiom. 
Indeed a major contribution to oceanic rogue wave 
dynamics (extreme waves) has been recently 
attributed to the Benjamin-Feir instability by a 
number of authors (Osborne, et al [2000]; Trulsen 
and Dysthe [1997; 1999], Janssen [2003]). Is it 
possible to do something really simple to modify (1) 
to give us back some of these nonlinear effects lost in 
the conversion to kinetic equations? Can it be that a 
kind of nonlinear Fourier analysis awaits discovery 
while proceeding in this direction? Can it be that this 
nonlinear Fourier analysis can also solve kinetic 
equations? The answers to these and many other 
fundamental questions are in the affirmative. A step 
in this direction is documented herein. 

Indeed we are about to describe and use a 
method which allows one to implement a kind of 
nonlinear Fourier analysis procedure which has two 
kinds of nonlinear Fourier modes: (1) weakly 
nonlinear Stokes waves and (2) nonlinear, unstable 
wave packets which have complex dynamics. The 
unstable wave packets can, in certain circumstances, 
lead to extreme waves that can be interpreted as rogue 
or freak waves. 

To modify (1) for nonlinear effects we have 
carried out the simplest possible approach. We have 
added a simple cubic nonlinearity: 
 

i(ψ t + Cgψ x ) + µψ xx + ν ψ 2ψ = 0    (3) 
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where ν = −ω oko
2 / 2 . This is the so-called nonlinear 

Schroedinger (NLS) equation, the simplest possible 
nonlinear wave equation for deep-water wave 
dynamics. We realize that this is just a small step 
toward full understanding of nonlinear wave trains, 
but it is an important step, because as we shall see 
there is much to learn. 
 Eq. (3) has the list of surprising properties given 
in the first paragraph above. These properties arise as 
a consequence of the exact solution of (3) for periodic 
boundary conditions using the inverse scattering 
transform. In the last half of the twentieth century a 
number of important theoretical developments have 
been made with regard to the understanding of 
nonlinear wave propagation [Novikov, et al, 1980; 
Ablowitz and Segur, 1981; Dodd, et al, 1982; Newell, 
1985]. Of particular relevance to the present work has 
been the discovery of large classes of nonlinear wave 
equations whose solutions may be computed without 
approximation using a new technique referred to as 
the inverse scattering transform (IST). IST may be 
viewed as a kind of nonlinear Fourier analysis, valid 
for fully nonlinear wave motion, which has many of 
the nice features that render ordinary Fourier analysis 
such a useful tool for the analysis of oceanic wave 
motions. Practical implementation of IST has been 
made possible by a number of theoretical advances 
[Boyd, 1981, 1990; Date and Tanaka, 1976; 
Dubrovin, et al., 1976; Flaschka and McLaughlin, 
1976; Its and Matveev, 1975; McKean and 
Trubowitz, 1976] with regard to the case for periodic 
boundary conditions and in a recent papers of 
Osborne [1995, 2002] in which techniques are 
developed for the simple exploitation of the method 
from physical, mathematical and numerical points of 
view. The approach has been cast in terms of a kind 
of nonlinear Fourier analysis which, in the small 
amplitude limit, reduces to the ordinary, linear 
Fourier transform. It is for this reason that the 
nonlinear Fourier approach may be viewed as a 
generalization of linear Fourier analysis. 
 The remainder of the paper is organized as 
follows. Section 2 discusses linear Fourier analysis 
while Section 3 discusses nonlinear Fourier analysis 
for the NLS equation. Section 4 gives three examples 
of unstable wave packets. Section 5 discusses 
modulation theory for the NLS equation and provides 
a basis for a nonlinearity (Benjamin-Feir) parameter 
based on inverse scattering theory. Characteristics of 
random wave trains subjected to the BF instability are 
briefly reviewed in Section 6. Section 7 discusses 
application of periodic inverse scattering theory to the 
analysis of random waves in the wave tank facility at 
Marintek, Trondheim, Norway. 
 
 2. LINEAR FOURIER ANALYSIS  

 Fourier analysis allows the construction of linear 
wave trains, η(x ,t ) , by a linear superposition of sine 
waves:  

 η(x,t ) = Cn cos knx − ω nt + φn( )
n=1

N

∑              (4) 
 
In the present case there are N sine waves which are 
interpreted as "degrees of freedom" or "Fourier 
components" in the wave train. In Eq. (4) the Cn  are 
the Fourier amplitudes, the kn  are the wave numbers, 
the ω n  are the frequencies and the φn  are the phases. 
The relationship between the frequencies, ω n , and 
the wave numbers, kn , is given by the dispersion 
relation, written symbolically: ω n = ωn (kn ). The 
dispersion relation defines the physics via the 
correspondences  

 
∂
∂t

↔ −iω ,  
∂

∂x
↔ ik  

 
For example the simple dispersion relation for deep 
water wave trains is given by   

ω = Cgk + µk 2     (5) 
 
which has the associated partial differential equation 
(1). The simplest periodic solution to (1) is a 
travelling sine wave  
 η(x,t ) = Co cos ko x − ωot + φo( ) 
 
from which the general Fourier solution for N 
components may be constructed by (4). The important 
point is that the amplitudes of the sine waves and 
their phases are constants of the motion, provided 
that the motion is linear. In oceanic applications one 
is often interested in the analysis of time series, i.e. 
measurements of the wave amplitude, η(0, t) , taken 
at a fixed spatial location over some convenient time 
interval; this implies setting x = 0  in (4).  
 

 3. NONLINEAR FOURIER ANALYSIS  
 We proceed by writing the NLS equation in a 
form that is simpler for theoretical calculations  

iut + uxx + 2 u2 u = 0        (6) 
 
This equation arises from (3) by a simple rescaling 
and translation:  

u = λψ ; µt → t ;  x − Cgt → x    (7) 
 
 The Fourier structure of the nonlinear 
Schroedinger equation (6) is given by [Kotljarov and 
Its, 1976; Tracy and Chen, 1988]  

u(x, t) = Ao
θ(x, t | B,δ − )
θ(x, t | B,δ + )

e2 iAo
2t      (8) 

 
where the Riemann theta functions, θ(x, t | B,δ± ), are 
given by:  
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θ(x, t) = ...
M2 = −∞

∞

∑
M1 = −∞

∞

∑         (9) 

 

    ... exp i Mn Xn
n=1

N

∑ +
1
2

Mm
n=1

N

∑ Bmn Mn
m =1

N

∑
 

 
 

 

 
 

MN =−∞

∞

∑  

 
where  
 Xn = kn x − ωnt − δ n

±   
The wave numbers, kn , frequencies, ωn , and phases, 
δ n , are computed by the methods of algebraic 
geometry (see [Osborne, 2002] for a review and a list 
of references). It should be noted that the theta 
functions (9) are just generalized Fourier series, 
where the spectral amplitudes correspond to a 
(Riemann) matrix, B , rather than to a vector, Cn , as 
in linear Fourier analysis (4). 
 To better understand the solutions of (3) using 
the nonlinear Fourier decomposition (9) let us 
consider a number of simple examples. The ratio of 
theta functions, θ(x, t | B,δ − ) / θ(x, t | B,δ + ) , is the 
complex modulation envelope function. When there is 
no modulation, θ(x, t | B,δ − ) / θ(x, t | B,δ + ) = 1, we 
have  

u(x, t) = Aoe2 iAo
2t       (10) 

 
This is the so-called plane wave solution of the NLS 
equation. It corresponds to an unmodulated carrier 
wave. 
 To understand these nonlinear spectral solutions 
it is necessary to discuss the so-called spectral 
eigenvalue problem for the NLS equation, first found 
by Zakharov and Shabat [1972]:  
 iφ1x + iuφ2 = λφ1 

(11) 
 −iφ2 x + iu*φ1 = λφ2  
 
The values of the eigenvalues are crucial for 
describing the solutions (8) of NLS (6). Here we 
assume periodic boundary conditions to determine 
solutions of (11). Indeed one works in the λ -plane, 
Fig. 1.  

  
Figure. 1. Lambda plane where the nonlinear Fourier 
spectrum for the NLS equation lives. 
 
 The lambda plane is a complex plane for the 
eigenvalues of (11) which have real and imaginary 
parts, λ = λR + iλI , corresponding to the real and 
imaginary axes in Fig. 1. The simplest case is for the 
plane wave solution (10). This is the case of an 
unmodulated carrier wave of amplitude Ao . In the 
lambda plane (for which the spectrum is a perfect 
mirror image between the upper and lower half 
planes) the eigenvalues λ = ±iAo  on the imaginary 
axis correspond to the carrier wave, Ao . The 
modulations correspond to double points (pairs of 
eigenvalues) connected by spines (curves of spectrum 
connecting the double points). Two kinds of spectrum 
exist for NLS: (1) Stokes waves (for which the two 
eigenvalues of the double point are connected by a 
spine across the real axis) and (2) unstable wave 
packets (for which the two eigenvalues are connected 
by a spine contained entirely in the upper half plane 
(and also in the lower half plane by specular 
reflection). The Stokes waves have a Riemann matrix 
which is 1x1 (a scalar) while the unstable wave 
packets have a 2x2 matrix. 
 Unstable wave packets are characterized by 
double points in the upper and lower half planes. 
Their spectrum contains five numbers: 
{Ao, ε,θ, λRc , λIc}  (see Fig. 1). Here Ao  is the carrier 
amplitude, ε  is the half-distance between the double 
points, θ  is the angle of a straight line connecting the 
double points and the complex pair (λRc, λIc )  
corresponds to the centroid of the double points in the 
lambda plane. Thus five parameters are required to 
describe a single unstable wave packet, i.e. the 
nonlinear interaction between the carrier and a long-
wave unstable modulation. The unstable packet 
modes have very interesting physical behavior: They 
are packets which can, early in their evolution, 
correspond to a small modulation of the carrier and 
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then later become large modulations which can reach 
up to several times the carrier amplitude. An 
important property of an unstable packet mode is the 
maximum amplitude it can reach during its evolution. 
This can be computed by the simple formula: 
 

ηmax
Ao

= 2
λI
Ao

+ 1       (12) 

 

 In the light of this discussion of the lambda plane 
it is interesting to recall where historical wave tank 
experiments have resided in the lambda plane. 
Roughly, these correspond to the small vertical box of 
eigenvalue pairs on or near the imaginary axis as 
shown in Fig. 1; these correspond to three of the five 
parameters being identically zero: {Ao, 0,0, 0, λIc}. 
Indeed, based on this observation, most of the lambda 
plane has yet to be explored. In our view, many 
surprises await future exploration of the entire plane. 
 We already know about Stokes wave solutions of 
the NLS equation, i.e. they correspond to the dnoidal 
wave solutions of the equation and are double points 
with spines crossing the real axis (Fig. 1). To save 
space we move immediately to solutions of NLS that 
correspond to unstable wave packets.  
 
 4. ANALYTICAL EXAMPLES OF 
UNSTABLE WAVE PACKETS 
 
 A large number of examples of unstable wave 
packets are known [Osborne, et al, 2000]. We 
consider three cases: (1) {Ao, 0,0, 0, Ao / 2} , (2) 
{Ao, 0,0, 0, Ao} and (3) {Ao, 0,0, 0, 2Ao} . The first 
case lies on the imaginary axis below the carrier, the 
second lies directly on the carrier and the third lies 
above the carrier in the lambda plane. The first case 
considered has the following solution to the NLS 
equation:  

u(x, t) = Ao
cos[ 2 Ao x]sech[2Ao

2t] + i 2tanh[2Ao
2t]

2 − cos[ 2Aox]sech[2Ao
2t]

 

 
 

 

 
 e

2iAo
2t

(13) 
The imaginary part of the eigenvalue is λI = iAo / 2  
and the maximum packet amplitude is then given by  
 

ηmax
Ao

= 2
λI
Ao

+ 1 ≅ 2.4  

  
Figure. 2. Modulus of unstable wave packet that lies 
below the carrier in the complex lambda plane with 
spectrum: {Ao, 0,0, 0, Ao / 2} . 
 
This case is typical of previous studies of the 
Benjamin-Feir instability, i.e. we have a small 
amplitude modulation in the far past. As seen in Fig. 
2 the small modulation is not easily visible at early 
times, it appears to be a broad flat plane over all x at 
small t. Then exponential growth is seen to lead to a 
finite amplitude of ~2.41 times the carrier amplitude 
and then the wave decreases in amplitude as the 
modulation effectively disappears for large times. 
This solution to NLS (13) is periodic in x and decays 
exponentially for large past and future times; it can be 
viewed as a single nonlinear mode (a single Fourier 
component) of NLS with a 2x2 period matrix.  
 The second case (which lies directly on the 
carrier) is shown in Fig. 3. It has the exact solution 
(see [Osborne, et al 2000] and references therein]) 
given by 
 

u(x, t) = Ao 1−
4(1+ 4iAo

2t )
1 +16Ao

4t2 + 4Ao
2 x2

 

 
 

 

 
   (14) 

 
Here the imaginary part of the eigenvalue is λI = iAo  
and thus the maximum wave height is given by: 
 

 
ηmax
Ao

= 2
λI
Ao

+ 1 = 3.0  

 
From (14) we see that this solution to NLS is 
characterized by an algebraic decay for large x and t. 
In the spirit of the periodic inverse scattering 
transform (14) is a nonlinear Fourier component in 
the theory. 
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Figure. 3. Modulus of unstable wave packet that lies 
on the carrier in the complex lambda plane with 
spectrum: {Ao, 0,0, 0, Ao}. 
 
 The third case (above the carrier) is shown in 
Fig. 4. 
 

u(x, t) = Ao 1+
2 cos[4 2Ao

2t] + i 2 sin[4 2Ao
2t]( )

cos[4 2 Ao
2t] + 2 cosh[2Ao x]

 

 
 
 

 

 
 
 
e2 iAo

2t  

(15) 
The eigenvalue is given by λI = i 2Ao  so that the 
maximum height has the value  
 

ηmax
A

= 2
λ I
A

+ 1 ≅ 3.8  
 
This case lies above the carrier and is no longer a 
small amplitude modulation for times far in the past. 
Indeed the solution is periodic in t and exponentially 
decaying in x. Note that for small time in Fig. 4 the 
spatial variation in the solution is a large amplitude 
modulation. This behavior is characteristic of spectral 
components with centroid above the carrier in the 
lambda plane [Tracy and Chen, 1988].  
 

 
 
Figure. 4. Modulus of unstable wave packet that lies 
above the carrier in the complex lambda plane with 
spectrum: {Ao, 0,0, 0, 2Ao} . 
 
 At this points is seems clear that there are an 
infinite number of solutions of the NLS equation each 
corresponding to particular values for the parameters 
in the spectrum {Ao, ε,θ, λRc , λIc} . This is also true of 
the linear Fourier spectrum where there is a four-
parameter family for amplitude A, wave number k, 
frequency ω  and phase φ  for each sine wave 
component: {A, k, ω, φ} . However, for the IST 
solution of the NLS equation the basis functions and 
the space/time dynamics are much less boring than 
simple sine waves, as verified by Figs. 2-4. 
 
 5. MODULATION THEORY FOR THE NLS 
EQUATION 
 
 Small amplitude modulation theory for the NLS 
equation predicts a number of interesting features 
about the nonlinear propagation of initially small 
amplitude sine wave modulations. One of the most 
important is shown in Fig. 5 where a small amplitude 
modulation of a carrier wave is shown (both the real 
and the imaginary parts of the carrier are given). At a 
later time this small modulation develops into an 
unstable wave packet as seen in Fig. 6. In the present 
case the maximum amplitude is about 2.6 times the 
carrier height. 
 One of the important properties of an unstable 
wave packet is the growth rate:  

Ω = iωoko
2ao

2 K
2 2ko

2ao

 

 
  

 

 
  1− K

2 2ko
2ao

 

 
  

 

 
  

2

       (16) 

 
This is Yuen’s result [Yuen, 1988] when squared, but 
we leave this equation in the above form to emphasize 
the dependence on the Benjamin-Feir parameter. The 
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above equation is just the imagery part of the 
modulation frequency and is graphed in Fig. 7. 
 Another important property of unstable wave 
packets is the maximum amplitude of the packet with 
respect to the carrier amplitude:  
 

amax

ao
=1+ 2 λo

ao
= 1+ 2 1− K

2 2ko
2ao

 

 
  

 

 
  

2

          (17) 

 

 
 
Figure. 5. Small amplitude initial modulation of a 
carrier wave. 
 

 
 
Figure. 6. Small amplitude initial modulation of Fig. 
5 has grown into an unstable wave packet. 
 

  
Figure. 7. Instability diagram for small amplitude 
modulations for the NLS equation. 
 
This function is graphed in Fig. 8. We see that the 
maximum growth rate of Fig. 7 is associated with an 
unstable wave packet that reaches a height of ~2.41 
times the carrier height. Smaller modulation wave 
numbers are necessary to get larger packet amplitudes 
(up to a maximum of 3 times the carrier height), 
although they will take longer to reach their maximum 
height because the growth rate is smaller. However 
the maximum height of 3 occurs only for infinitesimal 
wave number. 
 

 
 

Figure. 8. Maximum amplitude of an unstable wave 
packet as a dimensionless wave number. The 
maximum amplitude for the maximum growth rate 
(see Fig. 7) occurs for one; the maximum amplitude is 
2.4142 (see example in Fig. 2). 
 
 Periodic inverse scattering theory [Kotljarov and 
Its, 1976; Tracy and Chen, 1988; Osborne, et al 2004] 
tells us that for small-amplitude modulations unstable 
wave packets to exist when ρaoL > nπ  where 
ρ = 2ko

2  and L > 2π /K  where K is the modulation 
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wave number, ao  is the carrier amplitude and ko  is 
the carrier wave number. Here n is an integer, 
n =1,2... that counts the number of unstable wave 
packets in a wave train. This provides a useful 
definition of nonlinearity in terms of a kind of 
Benjamin-Feir parameter: 
 

IBF = ρaoL
π

= 2 2ko
2ao

K
> n     (18) 

 
We see that this is the same parameter that appears in 
the growth rate (16) and the maximum amplitude (17) 
of an unstable packet, which we now rewrite: 
 

Ω = iωoko
2ao

2 IBF
2 −1
IBF

2      (19) 

 

amax

ao
=1+ 2

IBF
2 −1
IBF

      (20) 

 
Two of the most useful results for estimating unstable 
wave packet behavior can be written in terms of the 
Benjamin-Feir parameter! 
 It is also clear that unstable wave packet (a 
nonlinear mode in the spectrum) has the imaginary 
part of the centroid of the associated double point that 
is also a function of the Benjamin-Feir parameter: 
 

 λI = ao
IBF

2 − 1
IBF

 

 
and the inverse: 
 

 IBF =
ao

ao
2 − λI

2
 

 
Thus there is a unique relationship between the BF 
parameter and the spectrum of an unstable wave 
packet. 
 
 6. CHARACTERISTICS OF RANDOM 
WAVE TRAINS USING IST 
 
 Here we focus on a time series of length T, 
significant wave height Hs = 4σ  (σ  is the standard 
deviation of the time series) and fo  is the peak 
spectral frequency. Use the fact that ∆k /ko = 2∆f / fo  
(where ∆f =1/T , ∆k ≡ K ) and the Benjamin-Feir 
parameter becomes:  

IBF = 2 koao
∆f / fo

> n ~ carrier wave steepness
spectral bandwidth

 
 

It is common to take the steepness in the form:  

koao = 2π 2

g
HsTo

−2  
 
where we have used ao = 2σ . This definition is 
convenient because for a sine wave of amplitude a we 
have σ = 2a /2  and hence an estimate of the carrier 
amplitude give the obvious result ao = a . We are left 
with an estimate of the Benjamin-Feir parameter for a 
random wave train:  

IBF = 2π 2

g
Hs fo

3

∆f
> n          (21) 

 

 This provides a convenient way to estimate the 
number of unstable wave packets in a time series. It 
should be remembered that this is just a rough 
estimate of the number of unstable wave packets. 
Only the precise inverse scattering transform 
calculation will provide the optimal estimate. Fig. 9 
shows some of the important aspects of a time series 
(or space series) and its spectrum. This example is a 
JONSWAP power spectrum with γ = 6 . It is easy to 
see why enhancing γ  increases the Benjamin-Feir 
parameter and therefore increases the number of 
unstable packets in a wave train. This occurs because 
enhancing γ  increases the steepness and decreases 
the band width of the spectrum. 
 How high to unstable wave packets become with 
respect to significant wave height? Use ao = 2σ , 
Hs = 4σ  and (17) we find: 
 

 Hmax =
2

2
2

λI
ao

+1
 

 
 

 

 
 Hs  

 
For example for λI = ao / 2  we have 
Hmax = 1.704Hs , for λI = ao  we get 
Hmax = 2.121Hs  and for λI = ao  then 
Hmax = 2.707Hs . These bracket the often assumed 
“definition” of a rogue wave: Hmax > 2.2Hs . 
 
 7. TRONDHEIM WAVE TANK 
EXPERIMENTS 
 
 We have conducted a number of deep-water, 
random wave experiments in the facility at Marintek 
in Trondheim, Norway. The tank is 10 m by 10 m by 
270 m. We conducted the experiments discussed 
herein using standard software for wave generation 
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using random Fourier phases and the JONSWAP 
power spectrum: 
 

 P( f ) =
g2α *

(2π)4 f 5 e
− 5

4
fd

*

f

 

 
 
 

 

 
 
 

4

γ
exp − 1

2
f − fd

*( )/ σo fd
*( )2 

  
 
   

 

 
 
Figure. 9. A JONSWAP power spectrum with 
enhancement parameter γ = 6 . Shown are the 
necessary parameters for computing the Benjamin-
Feir nonlinearity parameter: IBF = (2π 2 /g)Hs fo

3 /∆f . 
 
For present purposes we varied only the parameter γ , 
the others remained their standard values. Nineteen 
probes were place along the tank and time series of 
one half hour were recorded at a rate of 40 Hz. A 
typical experiment is shown in Fig. 10, where we used 
γ = 6 . 
 The lowest time series in Fig. 10 corresponds to 
the input JONSWAP spectrum after it had traveled 
for 10 m (Probe 1). Probe 8, which is herein fully 
analyzed for unstable wave packet behavior, is 70 m 
from the wave maker (count probe numbers upwards 
skipping the horizontal straight line above Probe 1). 
The time series considered herein are shown in Figs. 
11 and 12; they have 4096 points and their temporal 
period is 102.4 s. For reference we put several 
properties of the wave train directly on Figs. 11 and 
12. The time series in Fig. 11 is at Probe 1, where the 
properties of the waves are still quite like those 
expected of the JONSWAP spectrum. On the other 
hand Fig. 12 shows the same part of the wave 
dynamics (found by shifting along the time axis using 
the linear group speed) at Probe 8, 70 meters from the 
wave maker. It is clear that the character of the wave 
train at Probe 8 is quite different from that at Probe 1. 
The packets at Probe 1 are broad and low, while the 
packets at probe 8 are narrow and high. This is the 
effect of the Benjamin-Feir instability on the 
nonlinear dynamics of a random wave train. Fig. 10 
offers hours of entertainment for those interested in 

learning how this instability affects random wave 
trains. 
 

 
 
Figure. 10. A 200 sec section of a random wave 
experiment conducted at Marintek. We used the value 
γ = 6  for the JONSWAP power spectrum. 
 
 We show the linear Fourier transform of the 
Probe 8 time series in Fig. 13. Also shown are the 
bounds of the band pass filter used to remove the 
Stokes contribution to the wave dynamics. This is a 
necessary step, because the NLS equation does not 
contain directly the Stokes effect, which is instead 
included only in Eq. (2). 
 The filtered wave train is shown in Fig. 14, along 
with the modulus of the envelope of the wave train, 
which has been computed using the Hilbert transform. 
The standard deviation σ  of the wave train and the 
amplitude of the carrier wave ao = 2σ  are shown in 
the figure. 
 In Fig. 15 we show the results of the inverse 
scattering transform computation on the time series of 
Fig. 14. We discuss briefly how to interpret this 
interesting nonlinear spectrum. Note that the 
horizontal frequency axis is centered at the peak of 
the spectrum where the frequency is taken to be zero. 
There are two kinds of IST spectrum. The first kind 
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of spectrum has simple sine waves (or at most low 
amplitude Stokes wave components) that are shown 
connecting to the frequency axis by a line, a “spine”. 
These are the low lying components to the right and 
left of the spectrum and one can think of them as 
being like ordinary linear Fourier components. The 
other kind of spectrum is totally new and consists of 
unstable wave packets. These consist of double points 
connected by a spine. When the double points are 
degenerate no spine can be seen because the two 
points lie almost on top of each other. In other cases 
the spines can be seen clearly connecting the double 
points. In any event any isolated cross, or two crosses 
connected by a spine are unstable packet modes. 
Crosses connected to the frequency axis by a spine 
are quasi-linear modes (like linear Fourier 
components). Thus all of the crosses in Fig. 15 in the 
upper part of the picture are unstable packets; there 
are 13 of them, the larger of which are candidates for 
extreme waves at some point during their nonlinear 
evolution. 
 

 
 

Figure. 11. A 4096 point time series from Probe 1 at 
10 m from the wave maker. 
 

 
 

Figure. 12. A 4096 point time series from Probe 8 at 
70 m from the wave maker. Three extreme waves 

have amplitudes that are greater than three standard 
deviations. Two of the waves are greater than twice 
the significant wave height. 

 
 

Figure. 13. Fourier transform of time series at Probe 
8 in Fig. 12. The location of the band pass filter that 
removes the Stokes contribution is also shown.  
 

 
 
Figure. 14. Application of the Hilbert transform to 
the time series at Probe 8 in Fig. 12 to determine the 
modulus of the envelope of the wave train. This step 
also includes the filtering operation discussed in Fig. 
13. 
 

 
 
Figure. 15. Inverse scattering transform spectrum of 
the time series at Probe 8 in Fig. 12. Eigenvalue pairs 
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which are in the upper part of the graph correspond to 
large unstable wave packets. The carrier height is at 
0.054 m. 
 To properly interprete the IST spectrum of Fig. 
15 we compare to the linear Fourier spectrum on the 
same scale, see Fig. 16. All of the modes are stable 
and consist of sine waves. How can the nonlinear 
spectrum in Fig. 15 have so many unstable wave 
packets? Because, simply put, they have robbed 
energy from the linear Fourier modes. 
 

 
 
Figure. 16. Linear Fourier spectrum of the time series 
at Probe 8 in Fig. 12. The scale is the same as the IST 
spectrum in Fig. 15, so that comparison of the two 
can be made. 
 
 We finally compare the heights of the largest 
observed packets in the time series of Fig. 12. with 
inverse scattering theory using Fig. 15 and Eq. (12). 
The results are shown in Fig. 17. The theory of Eq. 
(12) is shown as a solid line. The wave heights 
measured from Fig. 14 (which has been filtered for 
the Stokes effect) are shown as solid squares. The 
wave heights measured from Fig. 12 (no filtering for 
the Stokes effect) are shown as open squares. One 
does not expect perfect agreement between theory 
and experiment because the measurements at Probe 8 
give the packet heights only at one spatial location. 
Since the packets are unstable their amplitudes are 
undergoing considerable space/time dynamics and we 
cannot expect that they will all be at their maximum 
heights at any spatial location. Nevertheless the 
results of Fig. 17 are indicative. 
 It is interesting to note that the Benjamin-Feir 
parameter, as computed by eq. (21), is IBF = 9.79 . 
This result is based upon linearized modulation 
theory and should be compared to the number of 
unstable packets in Fig. 15, namely, 13. Complete 
inverse scattering theory contains the full NLS 
spectrum, including large amplitude modulations. In 
the present case the number of fully nonlinear modes 

is 13, larger than the 9 modes estimated by the BF 
parameter. 
 
 8. SUMMARY AND DISCUSSION 
 
 We have used the periodic inverse scattering 
transform to study the nonlinear dynamics of deep-
water wave trains, both theoretically and 
experimentally. Experimentally we have used IST as 
a time series analysis tool to enhance our 
understanding of measured wave trains in the wave 
tank facility at Marintek, Trondheim, Norway. We 
have discussed how deep water wave trains have two 
kinds of spectrum, namely, a near linear component 
and a separate component of unstable wave packets. 
These packets are discrete components of the IST 
spectrum, they have their own nonlinear space/time 
dynamics and also nonlinearly interact with one 
another and the near-linear background sea state.  
 

 
 
Figure. 17. The largest packet heights predicted by 
theory (solid line) to the actual packet heights 
measured from Fig. 12 (with Stokes contribution) and 
Fig. 13 (Stokes contribution filtered out). 
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