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1. INTRODUCTION 
  
As coastal engineering projects become more complex, 
nearshore wave transformation models are required to 
provide more sophisticated results with greater 
efficiency.  In the past, studies of nearshore sediment 
transport (shoreline change, channel shoaling, or 
response to engineering projects) required only the 
longshore variation of wave height and angle.  Today, 
nearshore morphology change models require not only 
refraction, shoaling, and depth-limited breaking, but 
more advanced processes, including: 

 
• Wave-current interaction 
• Wind input 
• Wave-wave interactions 
• Whitecapping 
• Wave-bottom interactions 
• Diffraction 
• Reflection 
• Transmission 
• Wave asymmetry 
 

In addition to the requirement for more complex 
processes, nearshore transformation models must also 
meet the requirements of: 
 

• Grid flexibility 
• Efficiency 
• Ease of application 
• Robustness 
 

Model efficiency is especially important as projects 
grow in scale (local to regional) and resolution.  In the 
past, long time scales of wave transformation were 
calculated using a limited number of model runs 
covering the range of incident conditions.  These results 
were stored in look-up tables, which were accessed to 
provide wave information over years of sediment 
transport calculation.  Now, morphology models are 
sensitive to the interaction of waves, currents, and bed 
changes, thus requiring model applications to be closely 
coupled.   

 
Finally, model users require extensive validation of 
wave transformation technology.  Users need to 
understand model limitations and accuracy to provide 
the most effective model applications (whether they 
represent forecasts, hindcasts, or climate statistics for 
engineering design). 
 
The nearshore wave model STWAVE has been a 
workhorse for the US Army Corps of Engineers and the 
coastal engineering community.  The model has 
evolved over the past 10 years to include wave-current 
interaction, improved breaking, and enhanced 
efficiency.  Presently, an effort is ongoing to implement 
substantial improvements in STWAVE:  full-plane 
transformation and generation, diffraction, reflection, 
bottom friction, and development of improved third-
generation source terms.  The impetus for this effort is 
failure of existing models in complex environments 
(e.g., tidal inlets, near structures) and failure of existing 
models to represent details of spectral evolution under 
both complex and simple wind forcing.  Status of model 
upgrades is presented.   
 
2. HALF-PLANE VERSION OF STWAVE 
 
The half-plane version of STWAVE, version 4.0 (Resio 
1987, 1988; Smith, Sherlock, and Resio 2001; Smith 
and Smith 2002), was released 2001.  This version of 
STWAVE includes refraction, shoaling, depth- and 
steepness-limited wave breaking, simplified diffraction, 
wave-current interaction, and second-generation wave 
growth (wind input, wave-wave interaction, and 
dissipation).  The model simulates wave growth and 
transformation in a half plane (+/- 90 deg of the x axis). 
 Advantages of the formulation are efficiency 
(including very small memory requirements), ease of 
application, and robustness.  The input to the model 
includes no calibration or tuning parameters.  
Disadvantages include lack of flexibility (requires 
square grid cells), half-plane coverage (mean direction 
greater than 60 deg relative to the x axis lose significant 
energy), and lack of higher-order processes (diffraction, 
reflection, transmission, bottom interaction, and wave 



asymmetry).  The half-plane STWAVE have been 
validated through bench-marking studies (Ris et al. 
2002, Smith 2000) and numerous project applications 
(e.g., Smith and Ebersole 2000, Smith and Smith 2001, 
 and Smith and Gravens 2002,).  The executable of 
STWAVE version 4.0 and support documentation is 
available on the CHL web site: 
 
http://chl.erdc.usace.army.mil/CHL.aspx?p=s&a=Software;9 
 
The half-plane version of STWAVE numerically solves 
the steady-state conservation of spectral action balance 
along backward-traced wave rays: 
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where 
 
Cg   =  wave group celerity 
x,y  =  spatial coordinates, subscripts indicate x and y 

components 
C   =  wave celerity 
µ    =  current direction 
α    =  propagation direction of spectral component 
E    =  spectral energy density 
f     =  frequency of spectral component 
ω    =  relative angular frequency  
S    =  energy source/sink terms 
 
and the subscripts a and r indicate absolute and relative 
quantities with reference to the current, respectively.  
Equation 1 is solved in two steps; first the energy is 
propagated (left-hand side of the equation) and then the 
source terms are applied (right-hand side of the 
equation).  In the propagation step, wave rays for each 
frequency-direction bin of the spectrum are traced 
backwards one grid column to determine the point of 
origin, starting from the second column.  The angle of 
the backtraced ray is determined by applying Snell’s 
law, and then the spectral energy component is linearly 
interpolated between the closest grid points (the 
interpolation occurs in y direction) for each frequency–
direction bin.   The change in the width of the 
directional bins is also accounted for.  Direction bins in 
the half-plane version are set to a constant 5 deg (with 
35 total direction bins).  Once the backtraced energy 
density is calculated, then Equation 1 is applied to 
determine the refracted and shoaled energy density at 
the grid point of interest.  The entire grid column is 

transformed before source terms are applied.  If currents 
are present and the wave-current interaction option is 
selected, the locally specified currents are used in the 
calculation of wave number and wave celerity in the 
refraction and shoaling calculations.  STWAVE 
assumes a depth-averaged current and linear wave 
theory to calculate wave number, celerity, and group 
celerity. 
 
STWAVE includes second-generation source terms.  
The source terms include wind input, nonlinear wave-
wave interactions, high-frequency dissipation, and surf-
zone breaking.  Application of the first three source 
terms is optional, and the three are applied together to 
simulate wave generation from the wind.  Wind speed 
and direction are specified as spatially constant across 
the model domain.  For a wind speed to peak wave 
celerity greater than 0.98, downshifting of the spectral 
peak frequency is calculated as: 
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where fp is the peak frequency,  i is the grid column 
index, ∆x is the grid spacing, g is gravitational 
acceleration, and  u* is the friction velocity.  The energy 
added to the spectrum from the wind is given by: 
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where λ is a partitioning coefficient (0.75), ρa is the 
density of air, ρw is the density of water,  and Cp is the 
wave celerity associated with the spectral peak.  Wave 
energy dissipation (white capping) is given by: 
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where ε is a coefficient (=30), Etot is the total energy, k 
is the wave number, the subscript p refers to the 
spectral peak, and h is local water depth.  The 
dissipation is calculated independently for the spectral 
peak and for the low frequency range (f < 0.6 fp) and 
summed.  The angular distribution of input energy is 
cos6 and the frequency distribution relaxes to a TMA 
shape  (Bouws et al. 1985) with a high-frequency tail of 
k-2.5 (Resio et al. 2001). 
 



The final source term, which is always applied, is the 
depth- and steepness-limited wave breaking: 

• Incident frequency-direction wave spectrum 
on the offshore grid boundary. 

• Current field (optional).  
khLH mo tanh1.0

max
=             (5) • Tide elevation, wind speed, and wind 

direction (optional).   where Hmo is zero-moment wave height and L is 
wavelength.  This expression reduces to Hm0 = 0.63 h in 
shallow water.  Equation 5 is based on wave breaking 
in a strong ebb current (Smith, Resio, and Vincent 
1997).  This parametric formulation is applicable with 
or without currents. 

STWAVE output includes the following 
 

• Wave height, peak period, and mean direction 
over the entire grid. 

• Wave spectra and parameters at specified 
locations.   

• Radiation stresses over the entire grid for 
input to circulation models (optional). 

STWAVE is a steady-state model (note the lack of a 
∂/∂t term in Equation 1).  For nearshore transformation, 
this is generally a good assumption if the wind and 
wave fields vary on a time scale greater than the wave 
propagation time across the grid and the spatial 
variation of the wind field is larger than the grid.  
Quasi-time varying runs are executed by simulating 
conditions every hour or several hours.   

• Indices indicating regions of wave breaking 
(or breaking-induced dissipation) over the 
entire grid. 

 
STWAVE is included in the Surface-Water Modeling 
System Graphical User Interface (Brigham Young 
University Engineering Computer Graphics Laboratory 
1997).  The interface can be used to generate 
bathymetry grids, input spectra, and the model options 
file.  The interface also provides visualization 
capabilities, including contour plots of wave height, 
period, and direction; vector plots of wave and current 
direction; and plots of one or two-dimensional spectra. 

 
STWAVE has two offshore boundary conditions and 
two lateral boundary conditions.  The default offshore 
boundary condition is a constant wave spectrum 
applied across the entire offshore boundary (x = 0).  
There is also an option that allows multiple spectra to 
be specified on the offshore boundary.  STWAVE 
interpolates these spectra onto the offshore grid 
points using either linear or morphic interpolation.  If 
wave directions vary by 10-15 deg or more between 
the input spectra, linear interpolation can cause 
smearing or splitting of the directional distribution.  
The morphic method was developed to preserve the 
general form of the directional distribution (Smith 
and Smith 2002).  Nesting options in STWAVE 
automate the process of nesting and interpolating 
spectra between coarse- and fine-grid applications.  
Lateral boundary conditions in STWAVE can be 
specified as either closed or open.  Closed boundaries 
are specified by placing land points on the lateral 
boundary, which allows no energy to enter along the 
boundary.  Placing water points on the boundary 
specifies open boundaries.  On open boundaries, 
wave propagation is calculated by reflecting interior 
grid points across the boundary to provide the origin 
of the back-traced rays.  This method assumes 
approximate plane and parallel contours along the 
lateral boundaries and minimizes boundary effects in 
the grid interior.  

 
3. FULL-PLANE VERSION OF STWAVE 
 
The full-plane version of STWAVE is not a 
replacement for the half-plane version, but a 
supplement.  The versions will eventually be combined 
into a seamless application.  The half-plane version will 
always have an advantage of substantially lower 
memory requirements (~ two orders of magnitude) and 
faster execution.  The half-plane limitation is generally 
appropriate for nearshore coastal applications, with the 
exception of enclosed or semi-enclosed bays, estuaries, 
and lakes where seas and swells may oppose each other 
or there is no clear “offshore” direction.  The full-plane 
version allows wave input on all boundaries and wave 
generation from all directions. 
 
The full-plane version of STWAVE is based on 
Equations 1-5, like the half-plane version.  Propagation 
is solved in four sweeps.  Each sweep covers a quadrant 
of the grid (i.e., 0-90 deg, 90-180 deg, 180-270 deg, 
and 270-360 deg, relative the to grid x axis).  The order 
of the sweeps is dependent on the wind direction.  The 
half-plane opposite the wind direction is solved first, 
and then the half-plane coincident with the wind 
direction.  The propagation is solved by alternating 
sweep directions in each half plane for propagation.  
Wave generation is calculated immediately following 

 
The inputs required to execute STWAVE are as 
follows: 
 

• Bathymetry grid (including shoreline position, 
grid size, and grid resolution). 



the final propagation sweep for each cell.  Thus, similar 
to the half-plane version, generation is calculated 
following propagation.  The alternating method reduces 
the number of iterations required for the entire grid.  
Presently, the number of iterations is set by the user.  
For relatively simple bathymetry, generally only one or 
two iterations are necessary.   For complex 
bathymetries, where wave direction varies significantly 
across the grid, multiple iterations may be required.  A 
single iteration of the full-plane version is 
approximately 4.5 times slower than the half-plane 
version.  The full-plane version has not yet been 
optimized. 
 
Within the full-plane version, growth of a new wave 
train is initiated if the mean wave and wind directions 
differ by more than 90 deg.  For differences less than 90 
deg, the wind will grow and turn the propagated wave 
field.  Sea and swell components are tracked separately 
in the model.   
 
The full-plane version provides some additional 
improvements to the model: 
 

• Grid cells are rectangular, so x and y grid 
spacing is not required to be the same.  Also, 
the directional resolution is no longer limited 
to 5 deg, but is specified by the user. 

• A spectral generator is now included in the 
code, so TMA-shaped input spectra can be 
generated with input of wave height, peak 
period, and mean direction. 

• Planar bathymetry grids can also be generated 
within the model for simple applications. 

• Wave number is computed prior to 
propagation to avoid redundant calculations.  
These values are used for all sweeps and 
interactions, and they are carried through to 
additional input conditions, if tide and current 
do not change.  This reduces computational 
burden, but increases memory requirements. 

 
The full-plane version does not presently have a lateral 
boundary condition equivalent to the ‘open’ lateral 
boundary in the half-plane version.  This is because 
wave input can now be specified on all boundaries of 
the grid, and thus, there are no default lateral sides to 
the grid.  A lateral boundary condition will be added 
assuming one-dimensional propagation along a 
specified boundary.  Presently, lateral boundaries must 
be set away from the area of interest, so their impact is 
minimized. 
 
A range of benchmark cases have been simulated with 
the full-plane version.  One of these cases is Grays 

Harbor, Washington, USA.  Grays Harbor includes a 
complex ebb shoal and an inlet channel.  For this case, 
STWAVE converged by approximately an order of 
magnitude with each iteration.  For example, the mean 
change in wave height between the first and second 
iteration was 3.4x10-3 m, second and third was 2.6x10-4 
m, and third and fourth was 1.9x10-5 m.  The mean 
direction convergence was an order of magnitude or 
greater:  3 deg, 0.025 deg, and 0.005 deg, for second, 
third, and fourth iterations, respectively.   Figure 1 
shows comparisons of the half-plane and full-plane 
version for Grays Harbor, Washington.  The incident 
wave conditions for this case were wave height of 4.3 
m, peak period of 11 sec, and mean direction of 256 
deg.  The difference is calculated as the full-plane 
height minus the half-plane height.  Wave periods were 
approximately constant.  The results in the offshore are 
identical, but there are differences in the inlet entrance, 
near structure, shorelines, and channels, where wave 
directions become oblique to the half-plane grid.  The 
differences arise from the limitation of all energy 
propagating from the previous grid column in the half-
plane version.  Both versions of the model were run 
with closed lateral boundaries. 
 
 

 
 
Figure 1.  Example wave height differences between 
full- and half-plane versions STWAVE for Gray 
Harbor, Washington (25 Sep 1999, 0400), brown 
indicates land. 
 
4. ON-GOING MODEL IMPROVEMENTS 
 
A number of additional model improvements are in 
progress.  The goal is to develop an accurate and 
efficient model for application in a range of complex 
environments.  Planned improvements include:  bottom 
interaction, diffraction and reflection, and third-



it can be shown that ϕ  also satisfies the Laplace 
equation, and we have 

generation source terms. 
 
4.1 Bottom Interactions  
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              (9) Bottom friction and wave-mud interactions have not 
been included in standard versions of STWAVE 
because of the lack of validation data and general 
guidance in their application.  Data are now becoming 
available (e.g., Sheremet and Stone 2003) to quantify 
and validate wave-bed interactions.  These interactions 
may prove to be critical for accurate modeling of areas 
with very shallow shelves, reefs, or mud bottoms. 

 
Using Green’s theorem and noting that the form of D0  
can be written in terms of Bessel functions of order 
zero, the complex amplitude of a wave inside a 
bounded region can be written as an integral around the 
boundary (similar to the derivation of wave diffraction 
in the Huyghens-Kirchoff integral used in optics),  

4.2 Diffraction and Reflection  
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situations with complex bathymetry, diffraction in most 
wave spectra can be modeled via a phase-averaged 
diffusion operator; however, these authors point out that 
such an approximation may not be very good in the 
vicinity of a hard, surface-piercing structure.  Mase 
(2001) derives a mathematical representation of the 
diffraction process that works very well for relatively 
broad spectra even near structures; however, the 
accuracy of this representation diminishes for spectra 
with very narrow directional spreads.  As part of an 
ongoing effort to update STWAVE, a new method for 
representing diffraction in spectral models has been 
formulated.  This form preserves solution accuracy in 
both the near field and far field of the domain, even for 
the case of very narrow spectra near structures.  

where (s) is the amplitude at point “s” along the 
boundary S, 

a
0ρ (s) is the phase of the complex 

amplitude at s, r is the distance from the boundary to 
point “p”, θ  is the direction from “s” to “p” ,  and α is 
the wave propagation angle at “s.”  For the case of a 
straight-line boundary (ignoring 1800 reflections) and 
normalizing r by the wavelength, this can be written as 
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where the integral proceeds along y over the line 
segment “Y.”  This form for diffraction allows for a 
variation in wave height along Y rather than requiring a 
constant wave height as in a Fresnel integral form for 
diffraction but is otherwise quite similar to that 
representation, with the added stipulation that a near-
field solution form can be used in the representation 
shown here in place of the r denominator. 

 
A single spectral component (or its monochromatic 
counterpart) will have a velocity potential of the form 
 

cosh[ ( )]
cosh( )

i tg k h z ae
kh

ωφ
ω

−+
=              (6) 

  
where z is the vertical coordinate with zero at the water 
surface, is the topography of the free surface at time 
= 0 (basically an amplitude function in x and y), and t is 
time.  Since the velocity potential is irrotational, we 
must have 

a
Berkoff (1973) showed that the combined effects of 
refraction and diffraction could be solved via the “mild-
slope approximation” 
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If we consider a second function such that where c is the wave phase velocity cg is the wave group 
velocity, and ρ  is wave phase along the ray.  The first 
equation is the eikonal equation for the refracted-
diffracted ray and the second is the condition for energy 
conservation along the ray.  The second term within the 
curly brackets is the combined refraction-diffraction 
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coupling term.  Accurate solution of this equation 
requires a resolution in x and y such that the grid 
increment is smaller than L/8. 
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A singularity in the amplitude function exists at the 
boundary of a surface-piercing structure.  The sharp 
interference patterns in monochromatic waves passing 
by such a structure are created by the superposition of 
the diffracted wave from this singularity and the 
geometric wave passing by it.  Near a singularity, we 
have  

 
where M is taken to cover a sufficient range in y to 
provide an accurate approximation to the total integral. 
RB and IB in this equation represents real and imaginary 
boundary integrals taken to infinity, effectively taking 
the phase, rate of phase variation along y, and the 
amplitude of the last point and treating it as though this 
wave extended to infinity.  This step was added to 
eliminate diffraction from boundary discontinuities.   
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The phase of the wave at “p” is given by  
 

as .  This suggests that the diffraction pattern 
will depend primarily on the first term in the curly 
brackets near a structure, with a secondary (relatively 
slow) dependence on refraction and other processes.  In 
such cases, it is possible to adapt a series solution for 
this problem, i.e. 

0y →
1tan I

p
R

ρ −  Σ
=  Σ 

             (18) 

 
where Rand IΣ Σ  are the sum of the imaginary and 
real contributions to the H-K integral, respectively.  The 
energy flux angle at “p” is found from 

 r r (0) (1)
p p pΓ = Γ + Γ + ⋅⋅⋅

r

r
             (15)  

1sin pk
y
ρ

α −
Γ

∂ 
=  ∂ 

             (19) 
where  is the energy flux vector at “p” and the 
superscripts “(0)” and “(1)” refer to the order of 
magnitude of the terms.  In this case, we allow the 
diffraction solution to represent order zero and add the  
effects of refraction as a second step to the solution. 

pΓ

 
By shifting the discretized elements of the operator ±n 
positions along y, a simple estimate of the angle can be 
obtained that is not directly dependent on the scale of 
the grid resolution. 

 
The solution for diffraction is very accurate provided 
that the resolution along y is sufficiently small, say on 
the order of L/20.  However, its solution is quite slow 
numerically on such a scale; hence direct solution of the 
Huyghens-Kirchoff form for diffraction is too 
cumbersome for most wave modeling purposes.  Thus, 
instead of the exact form, we substitue a pre-solved, 
discretized complex operator D, defined as 

 
Treating the diffraction-only solution in terms of a field 
equation for the rays, we can represent the effects of 
refraction on path (flux angle and displacement) and 
amplitude as 
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 where R is the real part of the H-K integral and I is the 
imaginary part of the H-K integral for an incident wave 
of unit amplitude.  The terms inside the parentheses 
denote the resolution in y and x for fixed values of α, 
respectively.  After sensitivity testing, these have been 
set in the current version of the code to 

/ 400,  and /10y L x Lδ δ= = .  Inside STWAVE 
diffraction then becomes represented as a simple inner 
product with amplitude  

 
where I0 references the x-location of the boundary and I 
references the location of the point at “p.”  The term 

references the effective change in amplitude along 
the ray due to refraction at the Ith column of the grid.  
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To implement additional source terms such as wave 
breaking, this is modified to the form 
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where the term represents the sum of all additional 
source terms considered at the Ith column of the grid. 

ieS

 
Figures 2 and 3 show the modeled results for the 
amplitude and angle, respectively, of a monochromatic 
wave propagating perpendicular to a single “one-arm” 
breakwater.  The incident wave height is 0.62m, the 
period is 10 sec, and the direction is normal to the 
breakwater.  The water depth at the breakwater is 15 m, 
and the bathymetry behind the breakwater slopes up to 
1 m and then back to 15 m.  The plots are given for a 
distance of 0.7 L behind the breakwater.  The 
breakwater shadow zone is grid cells 1 to 10 (∆x = 15.7 
m). In these figures the red line represents the solution 
with no refraction, shoaling, and breaking, while the 
green line represents the solutions with those effects 
added. The solution is an excellent approximation to the 
exact integral solution for this case.  The differences in 
the solutions in wave height are due to breaking over 
the shallow bathymetry, and the differences in wave 
direction in the shadow zone are due to refraction.  
Figures 4 and 5 show results for waves propagating 
through a breakwater with two gaps.  The incident wave 
conditions, bathymetry, and grid resolution are the same 
as the one-arm breakwater case.  The breakwater 
shadow zones are cells 1-10, 19-23, and 32-41.  Note 
the symmetry in wave height and direction around the 
center of the middle breakwater. 

 
Figure 3.  Wave angle (deg) behind a one-arm 
breakwater (red is diffraction only, green is with 
refraction, shoaling, and breaking). 
 
 

 

  

 
Figure 4.  Wave height (m) behind a breakwater with 
two gaps (red is diffraction only, green is with 
refraction, shoaling, and breaking). 
 
 

Figure 2.  Wave height (m) behind a one-arm 
breakwater (red is diffraction only, green is with 
refraction, shoaling, and breaking).  
 



  
  
Figure 5.  Wave angle behind a breakwater with two 
gaps (red is diffraction only, green is with refraction, 
shoaling, and breaking). 

Figure 6.  Wave height (m) along a fully absorbing wall 
(wall is at grid point 10). 
 

 
Single and/or multiple reflections can be represented in 
terms of a geometric expansion of the form 
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where N is the number of apertures required to cover a 
sufficient integration domain, β is the reflection 
coefficient, and k is the number of reflections 
encountered enroute to “p.”  Figure 6 shows the results 
for a unidirectional, monochromatic wave propagating 
along a completely absorbing wall (β=0). The incident 
wave conditions are the same as the previous example 
(H = 0.62m, T = 10 sec, and the wave direction is 
parallel to the wall.  The wall is located at grid point 10. 
 As expected, this solution is equivalent to the case of a 
“one-arm” breakwater.  Figure 7 shows the results for a 
wave propagating along a completely reflective wall 
(β=1) for the same incident wave condition.  The 
simulation exactly preserves the wave height across the 
domain, which is expected since this situation mimics 
the case of non-absorptive waveguides. 

 
Figure 7.  Wave height (m) along a fully reflecting wall 
(wall is at grid point 10). 
 
4.3 Third-Generation Source Terms 
 
As described in Resio et al. (2004), source terms in 
existing third-generation wave models are not 
considered adequate for coastal applications. The first 
major problem is that the Discrete Interaction 
Approximation (DIA), used for estimating the wave-
wave interaction source term in such models, does not 
provide a good representation of complex spectra 
typical of coastal areas as shown in Figure 8.  A second 
major problem is that the shallow-water form for wave-
wave interactions used in such models is based on the 

 



work of Heterich and Hasselmann (1980).  As was 
pointed out by Heterich and Hasselmann, this 
approximation very strictly limited to applications in 
which kph ≥ 1.  Such a situation is reached in moderate 
rather than shallow water for most ocean waves, e.g., a 
10-sec wave period in 20 m water depth.  Resio et al. 
(2004) show that the source–term approximation based 
on the Heterich and Hasselmann (1980) scaling is 
highly inaccurate past this limit (Figure 9) and is not 
appropriate for shallow coastal areas. 

Scaled source term for Tp 12 sec.
JONSWAP spectrum in 10 meters
Compared to actual computed values.

(kph=0.55)Scaled Snl

Actual Snl

But models such as SWAN are
often applied for kh values that 
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are much smaller than this!

 

 

 
Figure 9.  Example comparison of wave-wave 
interactions (Snl) for exact solution (green line) and 
Heterich and Hasselmann scaling (red line). 
 
5. SUMMARY 
 
Sophisticated coastal processes studies require accurate, 
efficient, and flexible nearshore wave transformation 
models.  These applications also demand more 
advanced wave processes.  A major effort in now 
underway to reformulate appropriate source terms for 
third-generation wave models in coastal areas.   These 
are expected to be completed within the next year and 
include: 
 

• new wind input function, 
• new wave breaking function,  
• new arbitrary-depth representation for wave-

wave interactions, and 
• incorporation of three-wave interactions based 

on a kinetic equation approach. 
  8.  Measured coastal wave frequency spectra and 

direction by frequency from  the Field Research 
y, Duck, NC.  Dashed line is in 16.6 m depth, 
ine is 7.7 m depth, and dotted line is 8.1 m depth. 

These new source terms will replace the existing 
second-generation source terms as work is completed 
and results in the new version of STWAVE are 
validated.  Work is also ongoing to incorporate 
diffraction, reflection, and bottom interaction Bench 
marking of model capabilities will remain a priority.  
As model physics are improved, more robust 
applications of wave models can be made without 
tuning coefficients or formulations to each application. 
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