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Theoretical background  
 

The Hasselmann kinetic equation [1] is a basis of many models of wind-wave 
forecasting. It describes changes of wave action (or wave energy) spectral 
density Nk due to effects of generation by wind, dissipation and four-wave 
resonant interactions 

dissinnl SSSNtN ++=∇∇+∂∂ xkk ω  (1) 
So far knowledge of wind wave generation and dissipation is rather short and is 
based mainly on empirical parameterizations of Sin and Sdiss in (1). At the same 
time, the nonlinear transfer term – collision integral Snl is known from “the first 
principles”. The basic results of solution of Eq.1 are limited by stationary 
solutions of the conservative kinetic equation: 

0=nlS  (2) 
The Rayleigh-Jeans solutions describe local balance of each resonant 
quadruplet of water wave harmonics, while solutions of other type, the so-
called Kolmogorov-Zakharov (KZ) solutions correspond to a dynamical 
equilibrium when input and output for each element of the nonlinear system are 
balanced, i.e. spectral fluxes of integrals of motion are constant. Two solutions 
of this type play a fundamental role – direct cascade solution with constant flux 
of energy from large to small scales [3] and inverse cascade solution that 
describes constant flux of wave action to large scales [4].  

In this paper we present theoretical and numerical analysis of families of 
self-similar solutions of the kinetic equation for water waves. These solutions 
can be considered as a generalization of the KZ solutions that describe 
adequately features of real wind wave spectra: pronounced peakedness, 
anisotropy, downshifting of developing wave spectra etc. Additionally, these 
solutions can be related quite naturally to conventional experimental 
parameterizations of the spectra [2] that imply self-similarity, or, more, 
universality of the spectra. The main point of the present study is: nonlinear 



 

  

transfer is a key physical mechanism of evolution of wind-wave spectra. 
Accepting this hypothesis and using an important feature of homogeneity of 
collision integral  

2193~ kNSnl  (3) 
(k is the wave vector), one can obtain self-similar solutions for the 
“conservative” kinetic equation (1)  

nlSdtdN =k  (4) 
as approximate ones for Eq.1. In the so-called case of duration-limited growth 
of wind waves (fetch limited-growth and the corresponding stationary 
inhomogeneous solutions can be considered in a similar way) the non-
stationary homogeneous solutions of (1) take the form  

)( β
β

α tbUatN kk =  (5) 
Parameters of the solutions (5) obey 

4)219(;4/19 −== βαba  (6) 
Parameters a and b are determined by initial conditions while for α  and β  the 
effect of formally small wind input and wave dissipation in (1) should be taken 
into account. The corresponding condition can be formulated in the form of 
balance equation  

dissin SSdtNd +=k  (7) 
for total wave action, input and dissipation (here brackets <…>  mean 
integration over the wave vector space). Within (7) parameters α and β can be 
specified as functions of the exponent r of power-like growth of total wave 
action  

∫ +=+= 11)24(;11)419(;~ rrtdN r βαkk  (8) 

Nonlinear transfer and growth of total wave action (energy) appear to be split 
in the model (4, 7). It implies that forms of wind-driven spectra are determined, 
first of all, by features of resonant wave-wave interactions while magnitudes of 
these spectra depend on total wind input mainly. This physical model has been 
tested in an extensive numerical study in order to show its consistency with 
numerical solutions of full kinetic equation (1) and with existent spectral 
models of wind-wave evolution.  

Numerical results 
Numerical approach was aimed, first of all, at justification of theoretical 

analysis of self-similar solutions of the Hasselmann equation (1). Details of the 
numerical algorithm used in this paper are published in [7, 8]. Preliminary 
results of the extensive numerical studies showed adequate accuracy and 



 

  

stability of calculations in a wide range of parameters of wave field and wind 
input [9, 10]. 

Two groups of numerical experiments have been performed to detail the 
properties of self-similar solutions and their relevance to real wind-wave 
spectra. “Academic” runs with artificial functions of wave input Snl were 
designed to obtain asymptotic (at large time) solutions in a wide range of 
indexes of self-similarity r (or α, β) as a reference for further numerical 
experiments with “real” wave generation. Perfect coincidence of the resulting 
solutions with predictions of self-similarity analysis was found. The forms of 
the solutions depend on the parameters of self-similarity very slightly, i.e. the 
numerical wind wave spectra have quasi-universal forms. It is consistent with 
universal forms of experimental parameterizations of wind-wave spectra [2, 6]. 
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Fig.1. Left panel – non-dimensional frequency spectra E(ω)/E(ωp) as functions of non-
dimensional wave frequency for different wave inputs (in legend). The JONSWAP 
spectrum for the standard peakedness γ=3.3 is shown by dashed curve.  Right panel - 
the dependence of the solutions parameters a and b (6), swell scaling is given by . 

Experiments with conventional functions of wave input [12-14] showed 
rather good agreement of the numerical and theoretical results. Forms of the 
solutions for different cases of wave input are found to be very close to each 
other and to solutions of the “academic” series. This universality feature is 
demonstrated by Fig.1 where normalized frequency spectra are shown for 
different input terms Sin, for swell solution (Sin=0) and for JONSWAP 
spectrum with the standard set of parameters [6]. An additional argument for 
this property – a universal scaling of parameters a and b (6) – is illustrated by 
right panel in Fig.1. It should be stressed that these parameters have been 
specified by positions and magnitudes of the peaks of the solutions. In other 
words, the self-similarity features are evidently more pronounced for high 
magnitudes of solutions where evolution is governed by nonlinear transfer term 



 

  

Snl mainly, while in the solutions periphery this evolution can be essentially 
non-self-similar. 

The correct definition of the self-similarity parameters is required in the 
case of “real” inputs when a non-self-similar background co-exists with a self-
similar “core” of the solution. The background can contaminate significantly 
the self-similarity features. It is seen in behavior of parameters of wind wave 
growth (see Fig.2): p – exponent of total energy growth and q – exponent of 
mean frequency downshift. Left panel of Fig.2 shows the directly calculated p 
and q, while in the right panel similar quantities are calculated as functions of 
parameters of peaks of solutions α and β (see Eq. 8). One can see that the last 
definition of the parameters (pexp, qexp) fits theoretical dependencies better.  
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Fig.2. Left panel – exponents p and q for power-like approximations of total energy and 
mean frequency of the kinetic equation solutions. Right panel - exponents pexp and qexp 
calculated for parameters α and β of the solution peak.  - isotropic “academic” runs; 

 - anisotropic “academic” runs;  - swell;  - “real” wave pumping.  Exponents for 
constant wave action and wave energy inputs are given by . Hard line shows 
theoretical dependence of p on q, dashed line corresponds to the Toba law. 

The dominating role of nonlinear transfer is justified by asymptotic 
behavior of the nonlinear transfer term Snl and fluxes of wave action, energy 
and momentum. The “conservative” kinetic equation (4) being rewritten in 
self-similar variables ξξξξ=ktβ gives the remarkable feature of self-similar 
behavior: nonlinear transfer term can be calculated explicitly as a linear 
function of Uβ(ξξξξ) 

))(( ξξ ξ βββ βα USUU nl=∇+  (9) 
Thus, Snl and all fluxes can be calculated in primitive variables by simple 
rescaling in time. One can show that signs of fluxes for the domain of validity 
of self-similar regimes are fixed and correspond to inverse cascading of wave 
action, energy and momentum. Comparison of directly calculated Snl and fluxes 
with their asymptotic counterparts determined by (9) are shown in fig.3 for two 
different times. Fig.3 shows strong tendency to self-similar behavior near peaks 



 

  

of solutions. Solution and nonlinear transfer term Snl are growing with time, 
while total wave input is tending to be constant. It is consistent with our 
starting point on dominating role of nonlinear transfer. Wave action flux in 
Fig.3 varies slightly with time, while fluxes of wave energy and momentum 
decay with time, as it is predicted by self-similar asymptotic (5). Such behavior 
can be related naturally to the KZ power-like spectra with slowly varying in 
time parameters. 
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Fig.3. Direct calculation of Snl and fluxes vs their asymptotical profiles predicted by 
Eq.9 for wave input [12], wind speed 10 m/sec. Plots age given for dimensional values 
and non-dimensional wave number κ/κp. Left –  time 4.15 hours; right –  time 65 hours. 

 
 Discussion 
 Experimental parameterizations of wind-wave spectra are based on 

similarity analysis proposed by Kitaigorodskii [15] and a concept of self-
similarity and universality of observed wind-wave spectra [2]. Thus, the 
experimentally measured parameters can be related straightforwardly with the 
corresponding theoretical and numerical results. Formally, the JONSWAP 



 

  

parameterizations [2, 6] are valid for the fetch-limited wave growth, while our 
numerical results are for duration limited case only. Thus, the perfect 
coincidence of numerical and experimental wave spectra found in the study can 
be considered as a justification of the model (4, 7). The “conservative” part (4) 
of the model describes universal forms of spectral distributions while balance 
equation (7) determines rates of spatio-temporal evolution of the spectra. 
Universality of “form functions” Uβ(ξξξξ) (their weak dependence on self-
similarity indexes) opens good prospects for  wave forecasting based on the 
model (4, 7) . 
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