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1. INTRODUCTION

Many operational forecasting centres run systems to assimilate satellite altimeter datainto wave models. A magjor
limitation to the current operational systemsisthelack of knowledge on the structure of the model errors. One
method used to determine the error correlationsis to use data from along-term observationa network and examine
the differences between model forecasts and the observations. Thiswork describes aninitial step in the calculation
of wave model error correlations from atimeter data, namely, an examination of the effect of the sparseirregular
atimeter sampling pattern.

The model error correlation matrix isintroduced in Section 2 of this paper. In section 3, aset of “true error correla
tions” is calculated from modelled wave fields, using the model climatology as the background field. In Section 4,
the modelled wave fields are sampled along simulated altimeter ground tracks and error correlations re-calculated
from this simulated altimeter data. The results are discussed in Section 5 and compared to the “true error correla
tions’. A brief summary is presented in Section 6.

2. THE MODEL ERROR CORRELATION MATRIX

Current operational wave data assimilation systems commonly use the techni que of Statistical Interpolation (Sl) to
combine the satellite altimeter data with the first-guess model fieldsto obtain analysed fields of Significant Wave
Height (SWH). A detailed description of this method can be found in Lionello et al. (1995) or Greenslade (2001).
An important component of the algorithm is the specification of the error correlation matrix of the model prediction,
Py. Thisisasymmetric Nyys by Nops matrix (Noos = the number of observations) with element (k, j) given by:

{5 T)

R, = :
K ke i
SSp

@

where H ; are the first-guess predictions from the mode!, s, isthe mode! prediction rmserror, T isthe true SWH and

<...> isthe expected value. In other words, the value of element (k, j) of matrix P isthe correlati on between the
model error at observation location k and the model error at observation location j. A major limitation to the current
implementation of Sl systemsisthe lack of agood representation of Py. It isusually assumed to be isotropic and to
have aform similar to:
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where L isthe decorrelation length scale and | X, - x| is the distance between the observation locationsk and j. An
example of P with L = 300 kmis shownin Figure 1.

e

In meteorology, amethod commonly used to determine the model error correlationsis to consider observations from
along-term observational network and examine the difference between model forecasts and the observations (eg.
Seaman, 1982, Hallingsworth and Lonnberg, 1986). In the past it has been difficult to apply this method within the
field of oceanography. Thisismainly dueto the lack of along-term observational network with reasonable space-
time sampling characteristics. Thus other methods have been sought.
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Figure 1. An example of atypical function used for background error correl ations.

An dternative method to estimate P, is to examine the difference between mode! analyses and model forecasts, ie,
assume that the model analysisisthe truth. Voorrips et al. (1997) apply this method to an ocean wave model and
estimate the spatial correlation structure of the forecast error by considering differences between the model forecast
a 24 hours and the model analysis. In this case, the analysiswas amodel run using analysed wind fields, ie, no wave
data are assimilated.

The advantage of this method isthat thereis“data” at all model gridpoints and so it is possible to obtain information
on correlationsin all directions. However, amgjor disadvantage of this method isthat there is a heavy reliance on
the ability of the wave model to provide high quality model analyses to be used asthe “truth”. This could cause
problemsin several ways. Even if no wave data assimilation is used in the determination of the model analysis, the
analysed SWH may be corrupted by the use of imposed correlation length scales in the assimilation process within
the atmospheric model which is used to provide wind fields to the wave model. In addition, it is quite possible that
the spatial structure of the errorsin the model forecast is similar to the spatial structure of errorsin the model ana y-
sis, which would result in inaccurate error correlations.

The ultimate aim of thiswork isto determine error correlations viathe first method described above, ie, by consider-
ing the differences between model forecasts and observations. Highest quality wave observations generally come
from wave-rider buoys or platformswhich are fixed in space. However, the spatia distribution of buoysis extremely
poor - for practical reasonsthey are generaly located in coastal regions- and so it is difficult to obtain any informa-
tion on the spatia error correlation structure from buoy data. Satellite altimeters, however, now provide acompre-
hensive global long-term network of wave observations, which can be used to determine Py

In this paper, the ability of atypica atimeter sampling pattern to obtain estimates of model error correlationsis ex-
amined. Thisisachieved by first calculating “error correlations’ from modelled wave fields. These are considered to
bethe “true’ error correlations. The modelled wave fields are then sampled along simulated atimeter ground tracks,
error correlations are re-calculated from this simulated atimeter data and the results are compared to the “true” error
correlations.

Equation (1) can be expressed as the spatia error correlation between two points, j andk, ie, (Daey, 1991)
-8, (O.- B)
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wherer istheerror correlation as afunction of great circle distance, r, and angle, g, the overbar represents atime-
average, O, are “observations’ and B; represent the background values. The actual fields used for these variables de-
pend on the method that is being used to determine the error correlations.




3. ERROR CORRELATIONS FROM WAVE MODEL

Thewave model used hereis AUSWAM, aversion of WAM cycle4 (WAMDI Group, 1988, Komen et al ., 1994)
with cycle 2 physics (Snyder, 1981) and 3rd-order upwinding numerics. No wave data assimilation was used in the
construction of the modelled wave fields used in this work. The domain spans the globe from 78° N to 78° Sat 0.5°
spatial resolution. Fields of SWH are output every 6 hours. Other details of the wave model (eg, wind fields) are not
relevant for thiswork and so are not listed here.

3.1 Correlation computations

A range of time periods and spatial domains were considered for the calculation of the wave model correlations. The
size of the domain can play an important role because fields of SWH are typically not homogenous over the ocean.
Generally, the larger the area considered, the larger the length scale of the correlation. On the other hand, on time
scales of weeksto months, SWH can be assumed to be stationary, so the time period chosen has less of animpact on
the correlation functions than the spatial domain. The selected time periods and domains were partly dictated by the
altimeter sampling pattern.

The time period chosen needed to be long enough so that at any location, there were several repeat observations
from the altimeter. It was also desirable to have it short enough to enable detection of any seasonality in the correla
tions. Thus atime period of three months was chosen. The spatial dimensions of the domain needed to be large
enough so that prior and subsequent altimeter ground tracks could be used (thisis discussed in detail later). How-
ever, the motivation for thiswork is data assimilation, and in data assimilation processes, one is most interested in
what happens at small scales. A box size of 20° in latitude and longitude was found to be the best compromise be-
tween these two requirements.

For each pair of gridpointsj, k within the domain, R was calculated according to Equation (3). Here, O, arethe 6-
hourly model SWH values and B; isthe model climatology, ie.
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where N isthe number of 6-hourly model fields within the 3-month time period. In addition, the great circle dis

tance, r (km) and q, the great cirde bearing (angle in degrees clockwise from North) between pointsj and k are cd-
culated. Thusthe“errors’ considered here are in fact anomalies from a 3-month climatological average.

Correlations were averaged into 1° by 1 km bins. Figure 2(a) shows an example of the model error correlationsfor a
box centred at (60W, ON), ie, in the north-western Indian Ocean for the time period July - September 1998. Clearly,
Rk = R and so the function isinvariant under a 180° rotation.

This correlation function can be interpreted as follows. Consider amodel gridpoint within this 20° box. Assume that
at thisgridpoint, at a particular time, the deviation in SWH from the model climatology islarge. Then firstly, and
most obvioudly, it can be seen that the SWH at gridpoints close to this gridpoint isalso likely to deviate strongly
from the climatology, whereas SWH at gridpoints further away islesslikely to deviate strongly from the climatol -

ogy.

For this particular region, the decay in the correlation function is lower in the zonal direction than the meridional
direction, ie, correlations are larger in the east-west direction than the north-south direction. From this elongated
shape of the correlation function, it can therefore be seen that a gridpoint x km to the east or west is more likely to
have alarge deviation from the climatology than a point x km to the north or south. Similarly, if SWH at thisgrid-
point is close to the climatology, then pointsto the east or west are more likely to be close to the climatological val-
ues than pointsto the north or south. The equivalent model error correlation using only every fifth model gridpoint is
shown in Figure 2(b). It can be seen that although the resolution is coarser and thereisa“banded” effect in the cor-
relation function, the major features of this plot are similar to those in Figure 2(a).

3.2 Fitting to analytic functions
The calculated correlations r (r ,q) were then fitted to analytic functions. A commonly used function in studies of
surface pressure and temperature error correlations (Julian and Thiebaux (1975), Seaman (1982)) is:
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Figure2. Model “error” correationsfor abox of size 20° by 20° centred at (60W, ON) for thethree-month
time period July - September 1998 (a) using all model grid pointsand (b) using every fifth model gri dpoint.

r (r.a) = (a, cosasd) + a, - a,)exp{ayd} ©)
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Thejustification for including a cosine dependency isthat often the temperature and pressure error correlation func-
tions decay to negative values before returning to zero at longer distances. For SWH on the scales of interest here,
thisisnot generally the case, so asimpler form for the correlation function can be considered by removing the co-
sine term. In addition, for the time being, the constraint that r - = 1.0 isincluded. These simplifications are not
vitally important because for thiswork it is not so much the actual formof the correlation function that isimportant,
asthe impact that the altimeter sampling pattern has on estimates of that form. The ssimplified function is:

r (r.q)= expfad) Y
with d given by Equation (6). Thisresultsin elliptical contours (which seems reasonable considering Figure 2) with
the parameter a, related to the eccentricity (e) of the ellipse, a, givesthetilt of the ellipse (angle of the mgjor axisin
degrees from North) and a; defines alength scale (or arate of decay). The procedure used to find the best estimate
for a; wasaNAG Fortran library subroutine for finding an unconstrained minimum of a sum of squares. In particu-
lar,

F(al,az,ag) = (r (ri i )' eXp{aedi})2 ©)
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is minimised.

Figure 3 shows contours of the analytic functions that were found to be the best fit to the model error correlations
shown in Figure 2. The best fit values for the parametersin this case are shown in Tablel.

a a, l/a,
All points 150 860 21689
Every fifth point 150 850 20526

Tablel. Parameter valuesfor thefunctionscontoured in Figure 3.



Figures 2, 3 and Table 1 demonstrate that the thinning of the model data by using only every fifth gridpoint has only
aminor effect on the results. So to reduce computational time, all further correlations were calculated using only
every fifth model gridpoint.
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Figure 3. Best-fit analytic surfacesfor the correlation functionsshown in Figure 2. Thesolid lineisfor the
case of all model gridpointsand the dashed linefor the case using every fifth point.

In addition to the anisotropic (2-D) fitting, the correl ations werefit to isotropic (1-D) functions. Candidate functions
were a Gaussian, equivalent to Equation (2):
i 1r20
r(r)=expi- -—y ©)
i 2a7)

and a 2nd-order auto-regressive function:
r(r)=Q+ar)epf- ar} (10)

Figure 4 shows the same correlations asin Figure 2 (b) but as afunction of distance aone, along with the best fit 1-
D functions. Overall, it was found that the 2nd-order auto-regressive function was a better fit to the correlations than
the Gaussian. For the remainder of this paper, only the auto-regressive function is consi dered. The fact that Equation
(10) isabetter fit for theisotropic case than Equation (9) may indicate that the best fit anisotropic functionisan
auto-regressive function with angle-varying distance, ie, Equation (10) with r given by d in Equation (6). However,
thisis not considered here.

The best fit value for the parameter a; inthe 1-D case (ie, the value of a; in Equation (10) represented by the long
dashesin Figure 4) wasfound to bea, =1.035" 10"*. The error correlation length scale isdefined as %1 andin

this case is approximately 966 km.
Graphics produced by IDL
Creator:
IDL Version 5.1.1 (hp-ux hp_pa)
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 4. One-dimensional correlationsfor the samearea and timeperiod asin Figure 2(b). Thedotted lineis
thebest fit Gaussian curve and the dashed lineisthebest fit auto-regressive curve.



3.3 Regional effects
Mode! error correlations were cal cul ated as described above for 200 boxes at 10° intervals over the globe for the

three-month time period July - September 1998. Best fit curves for both the i sotropic and anisotropic cases were
determined for each box. Correlations for an additional time period (Jan — Mar 1999) were also calculated, however,
the detail s are not presented here, for brevity.

3.3.1 Isotropic case
Figure 5 shows how the 1-D error correlation length scale ( }gi in Equation (10)) varies over the globe for thistime

period. It canimmediately be seen that the length scale varies quite significantly in space.
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Figure5. One-dimensional error correlation length scale (km) from modelled SWH fields over the globefor
20° boxes at 10°intervalsfor thetime period July to September 1998.

Thelongest scales are to be found in the northern Indian Ocean (Arabian Sea) and in the eastern equatorial Pacific.
Longer scalesimply that the model deviates from the climatology on alarge spatial scale. This means that areas of
anomaously high or low SWH are large during thistime period. The area of long length scalesin the Arabian Seais
associated with the Indian Monsoon. From May to September, winds in thisregion blow persistently from the south-
west, and so during this time period, the fetch for thisareaisrelatively long, stretching along the East African coast.
Thus an area of persistently high SWH developsin the Arabian Sea (Y oung, 1999). The size of the correlation
length scalesin Figure 5 reflects this.

The shortest length scales (< 500 km) can be seen on the western boundaries of the ocean basins and also in the
Southern Ocean in aband of short scales around 40°S. The short scales inthis areareflect the size of the storm areas
that propagate from west to east a ong this latitude band.

3.3.2 Anisotropic case

The correlation functions shown in Figures 2 and 3 indicate that the model error correlation is clearly not isotropic.
An indication of the anisotropy of aparticular correlation function can be obtained from inspecting just one contour
level, since each contour holds the same information on the eccentricity and tilt of the ellipse. Figure 6 showsthe
0.5-level contour of the ani sotropic mode! error correlations for each 20° box.

Therelative size of each ellipse corresponds well to the 1-D length scales shown in Figure 5. In particular, note that
the largest ellipses occur in the Eastern Pacific and the Arabian Sea. Overal, it can be seen that thereis generally a
large amount of anisotropy in the error correlations. Areasthat are particularly anisotropic are the Indian Ocean to
thewest of Australia and the Pacific Ocean to the west of South America. If the actual model errors have the same
structure as the anomalies shown here, this may have implications for current data assimilation schemes, which use
simpleisotropic correlation functions.
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Figure6. 0.5-evel contour of the best fit anisotropic correlation function for modelled SWH over the globe for
20° boxes at 10° intervalsfor thetime period July to September 1998.

4. ERROR CORRELATIONS FROM SIMULATED ALTIMETER DATA

Altimeter ground tracks (ie, latitude, longitude and time) were created for a satellite with an altitude of 788 km and
an orbital inclination of 108°. These are the parameters of the GEOSAT mission. The repeat period of the GEOSAT
atimeter is 17.05 days. This means that within athree-month period, each ground track will be sampled 5 or 6 times.
The orbital period of the satellite, ie, the time between subsequent ascending (or descending) equator crossingsis
approximately 100 minutes. The along-track spacing of observations was set to be 20 km.

A set of ground tracks was generated for every 20° box for the three-month period described above. For each box,
the background field (ie, the model climatology) and the 6-hourly model fields were interpolated to the simulated
atimeter observation locations. Bilinear interpolation was required for the background fields (two space dimensions)
and trilinear interpolation for the 6-hourly model fields (two space dimensions plustime). Figure 7 shows an exam-
ple of amode background field and a set of altimeter ground tracks.
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Figure7. A model background field, i e, climatological SWH (m) with simulated altimeter observation loca-
tions.



The calculation of error correlations from the simulated altimeter datais complicated by the fact that an altimeter
dataset represents atime series and few of the observations can be considered to be simultaneous. To calculate a
correlation between two observation locationsj and k according to Equation (3), there are two criteriathat must be
satisfied:

1. There must be simultaneous observations at each location. Thisis easily satisfied for the model fields, but for
altimeter data, there are no observations that are simultaneous. However, simultaneous can be defined as: occur-
ring within a short enough time period (say, t..,) SO that thefield of interest does not vary significantly. Thisis
discussed further below

2. Not only must criterion 1 be satisfied, but it must also be satisfied more than once within the time period of in-
terest. If thereis only one observation at each location then Ry reducesto thetrivial case of Ry = 1. Thisisone
of the reasons atime period of three months was chosen, as opposed to a shorter time period.

The temporal distribution of the altimeter observations within a 20° box on the earth's surface is complex. For a20°
box near the equator, one overpass takes approximately 6 minutes. If thisis, say, an ascending pass, then the time to
the next observation within the box depends on whether the next ascending pass falls within the box or not. If it
does, then the time to the next overpassis approximately 100 minutes (ie, the orbital period). If the next ascending
pass falls outside the box, then the next observation falling within the box will come from a descending pass. This
will occur after the earth has gone through half arotation period (ie, 12 hour s) and so the time to the next observa:
tion within the box may be either approximately 10.8 hours or 12.5 hours.

The combination of the two criteria outlined above and the complexities of the altimeter sampling pattern means that
if thax = 15 minutes, thenthe set of data-pairs between which correlations can be calculated consists of only aong-
track combinations. This severely limits the amount of directional information on the correlations. However, if . iS
extended to 2 hours then this allows the inclusion of subsequent (or prior) same-direction ground-tracks. This pro-
vides additional information in the zonal direction.

The disadvantage of using t,.., = 2 hoursisthat thereisthe possibility that the SWH field will have atered within the
2 hour period, and this may then corrupt the correlation calculations. Situations in which the SWH field would be
expected to ater the most rapidly are those in which the wind speed and/or wind direction changes abruptly. The
time-scale of the response of the mean wave direction to a change in wind direction has been shown to be greater
than 5 hours (Ginther et al., 1981, Komen et al ., 1994). Thisindicatesthat 2 hoursis a reasonable time period dur-
ing which it can be assumed that the SWH field will not change significantly.

Following Equation (3), error correlations were cal culated from the simulated altimeter data for all 20° boxes over
the globe at 10° intervals. For these calculations, B; isthe model climatology interpolated to the altimeter observation
locations, and the O; are the simulated altimeter observations. The time average isthe sum over the number of time-
levels for which observations occur at both locationsj and k. These correlations were then fitted to the same analytic
functions used for the model error correlations (Equation (10) for the 1-D case and Equation (7) for the 2-D case).

Figure 8 (a) shows an example of the error correlations from the model, ie, the “true” error correlations and 8(c) and
(e) show the equivaent error correlations for the altimeter sasmpled case for the two different values of t,,, The best
fit analytic surfaces are shown in the bottom panels. This caseisfor abox centred at (70W, 20S), in the central In-
dian Ocean. Table 2 gives the values of a; for each case.

a, a, 1/as
Model 1.92 1234 1737.1
Alt. ta = 15 min. 3.46 169.4 1679.6
Alt. t=2hrs 2.32 132.2 1908.3

Table 2. Parameter valuesfor the surfaces shown in Figure 8(b), (d) and (f).

Consider first the altimeter case with t,, = 15 minutes (Figure 8(c) and (d)). Thefirst point to note isthat as op-
posed to the true error correlations, the correlations using the simulated altimeter data do not look much like an el-
lipse. Correlations are cal culated only between along-track data pairs, so thereislittle information available on the
value of the correlations in the east-west direction. Some basic features are still evident, however. The correlations
are higher at shorter scales and the correlations in the north-west corner are lower than in the south-west corner. This
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Figure8. (d) Model error correlationsfor a 20° box centred at (70W, 20S) for thetime period July to Septem-
ber 1998. (b) Bet fit to the correlationsshown in (a). (¢) Same as (a) but using data from simulat ed altimeter
ground tracksand calculating correlationswith t,, = 15 minutes. (d) Best fit to the correlationsshown in (c).
(e) Sameas(a) but using data from simulated altimeter ground tracksand calculating the correlationswith
tmax = 2 hours. (f) Best fit tothe correlationsshown in (e).

leads to an analytic function for which the main features have some similarity to those of the model correlations. In
particular, the major axis of the ellipseisin the correct quadrant and the decay rate/length scaleis similar.

Figure 8(e) and (f) show how the correlations change with the inclusion of subsequent/prior ground tracks, i€. t,.=
2 hours. The best fit analytic function is now considerably closer to that of the model error correlation and thisis
reflected in thea; values. Although a; is now dightly further from the “true” value, a; and a, are quite close to those
of themodel error correlations.

In Figure 9 the equivalent plotsfor the 1-D correlations along with the best fit auto-regressive curves are shown. The
value of }gi in each case is shown in Table 3. Note the two distinct tailsin the model error correlations, represent-

ing the higher values in the south-eastern quadrant and lower values in the north-eastern quadrant of the 2-D corrda
tions. With thet,, = 2 hour case, the extra correlation values at large values of r (ie. correlations between observa
tions from different ground tracks) are not in general close to those of the model, but they do force thefitted curveto
be closer to the “true” correlation function.

Vay (L)
Model 692.9
Altt,=15min. | 566.5
Altt,.=2hrs 610.4

Table 3. Parameter valuesfor the curvesshown in Figure9.
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Figure9. SameasFigure8but for isotropicfitting. The dashed linein each panel representsthe best fit auto-
regressivefunction. (a) Correlationsfrom mode output. (b) Correlationsfrom simulated altimeter data with
tmax = 15 minutes. (c) Corre ationsfrom simulated altimeter data with t,,. =2 hours

The model error correlation length scale is defined to be the true length scale, L, and in this case, L = 692.9. The
length scale obtained from simulated altimeter data with t,,,, = 2 hours (L4 2n) Underpredicts the true length scale by
approximately 12%. Similarly, the length scale obtained from simulated altimeter datawith t,., = 15 minutes

(Lat 1smin) Underpredicts the true length scale by approximately 18%. These values arefairly typical and will bedis-
cussed further in Section 5.

4.1 Regional effects
Asin the case of the modelled wave fields, correlations were calculated for all 20° boxes over the globe for the same
3-month time period from simulated altimeter data. In this section, only the case with t,,, = 2 hoursis presented.

4.1.1 Isotropic case

Figure 10 shows how Ly o, Varies over the globe for this 3-month time period. Comparing thisto Figure 5, it can be
seen that most of the main features are evident. In particular, the longest scales occur in the Eastern Pacific and the
Arabian Sea, and aband of short scales appears in the Southern Ocean, although in this case it occurs at around
30°S. In addition, the pattern in the Atlantic Ocean (N and S) is very similar in the two plots. There are afew obvi-
ous anomalies occurring south of Japan and west of Tasmania. In these areas, Ly o iS considerably larger than L.
These anomalies are basically aresult of the full model error correlation having a different shape at short scales and
at long scales. Detailed discussion of these casesis not presented here, due to space constraints.

4.1.2 Anisotropic case

Thefitting of anisotropic functions to the correlations from the simulated altimeter datais now considered. Figure 11
showsthe 0.5 level contour of the error correl ations from the simul ated altimeter datawith t,,,. = 2 hours for each
20° box. Comparing thisto Figure 6 it can be seen that there are many |ocations where the ellipses are very different
to the model ellipses. In many regions, the contours are not closed - thisindicatesthat &, istoo big. On the other
hand, there are some encouraging similarities between the plots.

The most eccentric ellipses are generally found in the eastern equatorial Pacific. South of the equator, these are gent
eraly tilted in the right direction. In the northernmost and southernmost regions the comparison is relatively good ie,
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Figure 10. SameasFigure5 but for correlations calculated from smulated altimeter data.
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Figure11. SameasFigure6 but for correlations calculated from simulated altimeter data.

the size of the ellipsesis about right and they are generally isotropic or slightly northsouth elongated. The improved
performance of the atimeter sampling pattern at higher latitudes is partly due to the higher density of observationsin
these regions, and also due to their distribution. The convergence of meridians meansthat the altimeter ground
tracks become more east-west aligned at higher latitudes (see Figure 7). This meansthat at higher latitudes, the data
pairs for the correlation cal culations occur over amuch larger range of angles and so there is more information
available on the correlations in the east-west direction.

5. DISCUSSION

In this section, the 1-D correlation length scales from the simulated altimeter data are examined further. Figure 12
shows the difference between L and L, o S a percentage of L. Over most of the ocean, the altimeter sampling pat-
tern causes the length scale to be underpredicted (lighter shading). The areaswhere L is underpredicted by thelarg-
est amount are generally near the centres of ocean basins, while areas where the altimeter overpredictsthe length
scale are generally near the coast, or along the southernmost |atitude band.

The solid linein Figure 13 shows a histogram of the differences shown in Figure 12. Results from the second time
period (Jan — March 1999) are also included here (the results are very similar for both time periods). Boxeswith
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Figure 12. Difference (asa per centage of thetrue correlation length scale) between Figure 10 and Figure5.
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Figure 13. Histogram of the differences between L and L o, (solid line) and L and L4 15min (dashed line) asa
per centage of L for two 3-month time periods.

significant amounts of land are not considered. The mean difference is about 10.5%, suggesting that a possible
course of action might be to calculate Ly o, and thenincrease it by 10.5% to obtain the true correl ation length scale.
(Strictly speaking this should be 11.7% since if Ly on = 89.5%L then L = 111.7%L 4 o). However, the standard
deviation hereisrelatively large (20.4%) indicating that there is not much confidence in this method.

The two anomalies referred to in the previous section showed that the inclusion of prior and subsequent altimeter
ground tracks may, in certain situations, degrade the estimation of L. Since amethod is sought which providesa
consistent correction to L, and not necessarily the method that produces values closest to thetrue L, it isworth-
while to examine here the estimates of Ly 15min-

The global distribution of Ly 15min and the global distribution of differences (not shown here) are very similar quali-
tatively to Figures 10 and 12. The corresponding histogram of the differencesis shown in Figure 13 (dashed line).
The mean difference between L and Ly 15min iS14.0%, ig, it islarger on average than the difference between L and
Lt on- However the standard deviation for the 15-minute case is 18.5%. Thus amore confident estimate of the true
correlation length scale can be obtained by calculating Ly 1smin @nd increasing it by 16.3%.

The amount by which the altimeter underpredicts (or overpredicts) the 1-D correlation scal e should be a function of
the shape of the true 2-D correlation function. If the 2-D correlation isisotropic, then the correlation length scaleis
the samein all directions, and the limited sampling of the surface by the altimeter should not have any impact on the
determination of the length scale. Asthe 2-D correlation function becomes more anisotropic, and the ellipses be-
come more eccentric, then the underprediction of L by the atimeter becomes dependent upon the angle between the
altimeter ground tracks and the major axis of the ellipse.



Thiswill beinvestigated in future work. One approach could be to examine length scales obtained from ascending
and descending atimeter ground tracks separately. Other future work involves examining differences between real
(not simulated) altimeter data and modelled wave fields to determine the actual model error correlations. In addition,
the spatial and temporal variability of the correlation length scales will be investigated and the impact of thisvari-
ability on data assimilation schemes will be considered.

6. SUMMARY

The ultimate aim of thiswork isto use satellite altimeter SWH data to determine the structure of wave model errors.
In the work presented in this paper, the effect of the sparse, irregular altimeter sampling pattern has been considered.
Thiswas achieved by first calculating “true error correlations’ from modelled wave fields, using the model clima-
tology as the background field. The modelled wave fields were then sampled a ong simulated altimeter ground
tracks, error correlations re-cal culated from this simulated atimeter data and the results compared to the “true error
correlations’. It was found that regional variability in the 1-D error correlation length scale is captured quite well by
the simulated atimeter data. The correlation length scale is generally underpredicted as aresult of the irregular al-
timeter sampling pattern. It was shown that the best estimates of the correlation length scale are achieved by using
only along-track altimeter data. Determination of any anisotropy in the error correlations from altimeter data appears
less successful, although there are promising results at high latitudes.
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