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1.0 INTRODUCTION 

 

The prediction of extreme crest elevations is fundamental to the design of marine structures, irrespective of 

whether they are intended for deep-water offshore locations or shallow-water coastal locations.  In undertaking 

design extreme crest elevations, specified in terms of either a 1 in 100 year or 1 in 10,000 year event, are 

relevant to both the overall geometry of the structure, particularly the setting of deck elevations, and the sizing 

of individual members necessary to support the applied loads.  For example, in the design of a fixed structure 

deck elevations are traditionally set to maintain an effective air-gap, thereby preventing the impact of even the 

largest wave crests on the underside of the deck structure.  In contrast, the wave-induced forcing acting on the 

legs of the structure cannot be avoided and must be carefully assessed.  If the relevant Keulegan-Carpentar 

number (KC) is large,  
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where Û  is the amplitude of the horizontal wave-induced orbital velocity, T is the wave period and D is the 

diameter of the cylindiical leg, the forcing will be drag dominated.  In this case, the forcing is dependant upon 

the square of the wave-induced orbital velocity.  As a result, the maximum horizontal forcing, contributing to 

both the maximum base shear and the maximum over-turning moment, occurs directly beneath the largest wave 

crests and its magnitude increases with the square of the wave amplitude. 

 

Other examples where the assessment of extreme crest elevations is critical to the design process include the 

design of floating structures, particularly the determination of the applied loads, the corresponding vessel 

response and the occurrence of green water inundation.  Likewise, crest elevations are also key to the design of 

coastal structures for shoreline protection and flood prevention.  In these cases some degree of over-topping may 

be permissible, but its estimation must be based upon a clear understanding of extreme crest height distributions. 

 

Given the practical importance of extreme crest height distribution, the starting point for this paper lies in two 

recent advances.  First, the development of methods based on spectral response surfaces (Tromans & Suastika 

(1998)).  When this approach is combined with a first order reliability method (FORM) it allows the rapid 



determination of design criteria associated with the occurrence of extreme events.  Secondly, the recent 

development of new wave models allowing an exact (or fully nonlinear) description of the evolution of large 

waves within realistic sea states that are broad-banded in terms of their frequency spectrum and directionally 

spread.  The purpose of the present paper is to combine these approaches in an attempt to determine whether the 

distribution of extreme crest heights is significantly affected by the nonlinearity of the local wave field and to 

investigate the role played by directionality. 

 

The paper commences in §2 with a brief description of the spectral response surface method, its application to 

the prediction of extreme crest heights and its relation to the NewWave model (Tromans et al (1991)).  Section 3 

outlines recent developments in the descriptions of extreme waves, explaining how recent models may be 

applied to provide fully nonlinear calculations of extreme transient waves that are broad-banded in both 

frequency and direction.  Section 4 combines the methods outlined in §2 and §3 compares a number of results in 

which crest elevations with a given probability of exceedence are calculated using a linear, second-order and a 

fully nonlinear wave model.  Although some aspects of these results are preliminary, new results are presented 

and discussed and the significance of nonlinearity in determining crest heights clearly identified.  The paper 

concludes in §5 with a summary of the calculations made to date, an assessment of their practical significance 

and a discussion of additional work that is both on-going and planned. 

 

 

2.0 SPECTRAL RESPONSE SURFACES AND CREST HEIGHT ESTIMATIONS 

 

In broad terms the spectral response surface (SRS) method involves the application of conventional first order 

second moment reliability methods (FORM), Madsen et al. (1986) and Melchers (1987), to problems involving 

a spectral representation.  The method has previously been applied to several important issues in ocean 

engineering including extreme loads on space frame structures (Tromans & Van Dam (1996)), the ‘ringing’ or 

dynamic response of offshore structures (Tromans & Suastika (1998)), the shape and history of extreme crest 

elevations (Tromans & Taylor (1998)) and, more recently, second-order estimates of crest statistics (Tromans & 

Vanderschuren (2002)). 

 

In the latter case the method effectively involves random directional wave modelling in the probability domain.  

This has two distinct advantages.  First, the SRS method enables a number of linear theories for the distribution 

of maxima and the structure of a process in the vicinity of these maxima (Lindgren (1970), Tromans et al. 

(1991) & Phillips et al. (1993)) to be generalised for problems involving nonlinearity.  Secondly, it avoids the 

need for long time-domain simulations.  This becomes particularly important with increasing nonlinearity.  If a 

sea state is assumed linear, time-domain simulations are easily undertaken, but largely irrelevant given the 

theories noted above.  If it is assumed to be weakly nonlinear, and modelled using second-order theory (Sharma 

& Dean (1981)), time-domain simulations are straightforward (Forristall, 1998) but computationally intensive.  



With increased nonlinearity, including third and higher-order effects, long time-domain simulations are simply 

not possible.  Since the purpose of the present paper is to investigate the influence of fully nonlinear wave 

calculations on crest statistics, the SRS method is an obvious choice. 

 

Adopting a linear representation, the ocean surface elevation may be defined by the sum of a large number (N) 

of random, narrow-banded, frequency components, each of which is normally distributed.  All of the 

components are assumed independent and uncorrelated.  If aj is the random amplitude of the jth component (l ≤ j 

≤ N) ωj its frequency, kj the wave number vector )( yjxj kk , , jθ the random phase angle and t the time, the 

water surface elevation may be written as: 
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Where the superscript (1) indicates the first order or linear approximation and x defines the horizontal spatial 

location. 

 

Following earlier work the frequency components can be transformed onto standardised (unit variance, zero 

mean) variables by dividing each by its standard deviation. 
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where the superscript ~ indicates a Hilbert transform.  In the present context the Hilbert transform of a variable 

may be thought of as the value of the variable with its phase shifted by π/2.  Consequently, jj σσ =~ . 

Combining equations (2.1) and (2.2) it is easily shown that  
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Accordingly, it is clear that if a FORM is applied to provide a solution in terms of the standardised variables 

( x j, jx~ ) the component amplitudes and their phasing can be defined.  It therefore follows that the local water 

surface profile and the crest elevation are also defined.  Recalling that the joint density function of the 

standardised variables ( )jj xx ~, is a unit variance normal and that the variables are uncorrelated, the surfaces of 

constant probability density are concentric spheres in the space of the standarised variables.  The probability 

density is highest at the origin and falls monotonically as a function of distance from the origin. 

 

In a typical FORM analysis one might identify a surface of constant response (in our case a given crest 

elevation) and would then seek to identify the point on the surface that lies closest to the origin.  This is denoted 

as the design point ( )** ~, jj xx and its distance from the origin gives the probability that the specified response will 

occur.  In the present case we adopt a different approach in which we search along a given hyper-sphere of 

constant probability in order to find the maximum response for a given probability of exceedence.  Although 

different, the design point is located using established procedures based on Lagrange’s method of undetermined 

multipliers (Melchers, 1987). 

 

In earlier related work Tromans & Vanderschuren (2002) have adopted exactly this approach and have 

demonstrated that the SRS method is in very good agreement with statistical distributions based on a time-

domain analysis for exceedence probabilities from 0.5 down to 5x10-3.  For values less than 5x10-3 small 

differences arise but they may be accounted for in terms of the scarcity of data relating to the description of 

extreme crests in the time-domain simulation.  They also implemented the second-order description of the water 

surface elevation due to Sharma & Dean (1981) and showed that when this is optimised using the SRS method 

the resulting crest elevations are in very good agreement with the simple process of applying a second-order 

correction to the linear NewWave (Tromans et al (1991)). 

 

 

3.0 RECENT ADVANCES IN WAVE MODELLING 

 

It is well established that large ocean waves do not arise as part of a regular wave train, but occur as isolated and 

transient events within a random or irregular sea, which is broad-banded both in its frequency and its directional 

distribution.  In order to describe the evolution of such waves it has been shown that an appropriate wave model 

must be unsteady (or capable of incorporating the underlying frequency distribution), fully nonlinear (since we 

are primarily concerned with the largest waves), and able to incorporate the directional spread.  Until very 

recently (Bateman, Swan & Taylor  (2001)) it has not been possible to incorporate these three key requirements.  

Indeed, in terms of engineering design most of the commonly applied wave models either incorporate the 



nonlinearity (eg fifth-order Stokes model (Fenton, 1985)) or the unsteadiness (eg linear random wave theory) 

and do little in regard of the directionally. 

 

The motivation behind the development of this new class of wave model serves as an excellent of the interplay 

between laboratory observations, field data and numerical calculations.  The initial interest in the nonlinearity of 

these waves and, in particular, its relationship to directionality, arose as a result of comparisons between an 

analysis of field observations reported by Jonathan & Taylor (1996) and laboratory observations reported by 

Baldock, Swan & Taylor (1996).  In this latter study data defining the water surface elevation corresponding to a 

number of uni-directional wave groups were reported and comparisons with linear theory suggest that the waves 

may become very nonlinear, with maximum crest elevations as much as 40% larger than linear theory and 30% 

larger than second-order theory.  In contrast, the field observations suggest that for the waves observed the crest 

elevations were reasonably well predicted by second-order theory, indicating only weak nonlinearity. 

 

An obvious explanation for this difference lies in the directionality of real ocean waves.  Accordingly, 

Johannessen & Swan (2001) undertook a second and very detailed laboratory study in which focussed waves 

were generated with varying directional spread ranging from uni-directional cases (confirming the earlier 

findings of Baldock, Swan & Taylor  (1996)) to very short-crested waves involving a large directional spread 

(s=7, where s is the Mitsuyasu spreading parameter).  In this and much of the subsequent discussion the notion 

of a ‘focussed’ wave merely defines one in which the phasing of the freely propagating wave components and/or 

their direction of propagation is pre-determined so as to achieve the summation of wave crests at one point in 

space and time.  This represents the most effective method of achieving a large isolated wave crest within a 

broad-banded sea state and is believed to be representative of the evolution of large waves in the field.  Indeed, 

this concept of focusing lies at the heart of the (linear) NewWave Model that has been successfully compared to 

a number of field observations (Razario et al (1990)). 

 

The data presented by Johannessen & Swan (2001) confirm that the directionality is very significant in relation 

to the overall nonlinearity of the largest waves and offers a possible explanation for the difference between uni-

directional laboratory data and field observations.  Indeed, the influence of directionality was so significant that 

the results cast considerable doubt on the desirability of undertaking model studies using uni-directional waves. 

 

To further examine the influence of directionality Johannessen & Swan (2002) sought to investigate the 

laboratory data further.  To achieve this they required both temporal and spatial descriptions of the water surface 

elevation, ( )tη  and ( )y,xη  respectively, where ( )y,x define a horizontal plane located at the still water level 

and t the time.  Although the former description can be provided by laboratory observations, the latter cannot or, 

at least, not with sufficient resolution.  Accordingly, Johannessen & Swan (2002) adopted a three-dimensional 

extension of an exact uni-directional wave model proposed by Fenton & Rienecker (1982).  This model is based 



upon an approach first proposed by Longuet-Higgins & Cokelet (1976).  If the wave motion is assumed 

irrotational, the nonlinear free surface boundary conditions can be expressed as: 
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Where z is measured from the still water level upwards, g is the gravitational acceleration and φ is the velocity 

potential defined so that the velocity components in the )( zyx ,,  directions are given by )( wvu ,,  

= )( φφ zyx ∂∂∂=∇ ,, .  These conditions respectively define the kinematic and dynamic free surface boundary 

conditions, which require the fluid at the free surface to remain there and the pressure on the water surface to be 

constant.  Using these equations (or their uni-directional equivalent) Longuet-Higgins and Cokelet noted that if 

one had a spatial description of the wave field at some initial time 0tt = , )( 0,, tyxη  and 

)( 00 ,,, tzyx ηφ = , equations (3.1) & (3.2) can be used to time-march the wavefield to all subsequent times. 

 

Expanding the method of Fenton and Rienecker (1982), Johannessen & Swan (2002) achieved extremely good 

description of the evolution of the laboratory-scale wave field.  Unfortunately, the computational efficiency of 

this method in such that it cannot be readily applied to problems involving the very large range of length-scales 

appropriate to realistic ocean spectra. This problem has now been overcome by Bateman, Swan & Taylor (2001 

& 2002).  In this series of papers they adopted the highly efficient computational procedure proposed by Craig 

& Sulum (1993) and again extended the method to apply to directionally spread waves.  The overriding 

advantage of this technique is that by applying a Taylor series expansion of the Dirichlet-Neumann operator the 

solution can be formulated in terms of the surface parameters alone.  This dimensional reduction yields 

considerable computational savings, not least because it avoids the need for the large matrix inversion on which 

both the Fenton & Rienecker (1982) and the Johannessen & Swan (2002) models rely.  As a result, the model 

proposed by Bateman, Swan & Taylor (2001), and its subsequent extension to include the calculation of the 

water particle kinematics (Bateman, Swan & Taylor 2002), allow the evolution of realistic broad-banded spectra 

(in both frequency and direction) to be calculated with high accuracy. 

 

This wave model represents the state-of-the-art in terms of wave predictions and lies at the heart of the present 

study.  To apply the model one simply needs to identify the underlying frequency and directional spectra and to 

choose an initial time, 0tt = , at which the wave field is fully dispersed.  With no large waves present within 

the computational domain, a linear solution can be used to specify the initial conditions, )( 0,, tyxη  and 



)( 0,,, tzyx ηφ = , and the solution time-marched to provide a fully-nonlinear description of an extreme wave 

event that is, to all intents and purposes, exact. 

 

4.0 DISCUSSION OF RESULTS 

 

The results presented in this section correspond to a JONSWAP spectrum in deep water with a peak period of  

Tp = 12.8s, a significant wave height of Hs = 12.0m and a peak enhancement factor of g = 2.3. Initial calculations 

for this and several other cases confirm that if the water surface elevation is described by a linear model the 

exceedence probabilities of crest elevations calculated using the SRS method exactly reproduce the values given 

by the Rayleigh distribution. Likewise, the water surface elevations, ?(t), corresponding to these extremes are 

identical to the corresponding NewWave profiles (Tromans et al (1991)). 

 

Having reproduced the established linear behaviour, a second set of calculations sort to identify the difference 

between: 

(a) Applying the SRS method to a second-order description of the water surface elevation based on the 

analytical solution proposed by Sharma and Dean (1981). This provides a linear input spectrum that 

has been optimised to take account of the second-order frequency-sum and frequency-difference terms. 

(b) Applying the SRS method to a linear description of the water surface elevation and having identified 

the crest elevation (and the corresponding wave profile) for a given exceedence probability, applying a 

second-order correction again using the solution due to Sharma and Dean (1981). The principle 

difference being that in this case the linear input spectrum has been optimised on the assumption that 

the sea surface is linear. 

 

The results of this process are given on Figures 1a and 1b which respectively contrast the water surface 

elevation, ?(t), and the underlying frequency spectrum, a(?). The difference between the results is small and 

appears to be consistent with the earlier findings of Tromans & Vanderschuren (2002). 

 

Having established the success of the approximate method outlined in (b) above, a similar approach is adopted 

in respect of the fully nonlinear numerical calculations. Although this approach cannot, as yet, be fully justified 

the results do, at least, give some guidance as to the significance of the fully nonlinear interactions. At this point 

it is perhaps relevant to note that work is presently on-going to determine a linear input spectrum which has 

been optimised to take account of the full nonlinearity. Unfortunately, this task is extremely time consuming 

since it involves repeated runs of the fully nonlinear model at each stage of the optimisation process. However, 

at this stage our preliminary results suggest that there is little difference in the extreme values produced, 

particularly as the directionality increases, 



 

 

 
 

 
 
Figure 2 presents the results arising from the linearly optimised solution (method (b) above) and contrasts the 

crest elevation for a given probability of exceedence for a linear, a second-order and a fully nonlinear 

simulation. These results relate to a uni-directional wave field and suggest that in the case of the largest waves 

the contribution from the third and higher-order terms may be at least as large as those arising at second order. 



Confirmation of this is given in Figure 3, which contrasts the wave profiles corresponding to the second-order 

model and those from the fully nonlinear calculations. 

 

 

 

 
 

 

The wave profiles corresponding to three of the fully nonlinear cases are presented on Figure 4a. In the largest 

wave cases it is clear that the crest-trough asymmetry becomes very marked. This is consistent with the earlier 

experimental observations reported by Baldock, Swan and Taylor (1996) and is in part explained by the changes 



in the wave spectra noted on Figure 4b. As the wave height increases there is a marked transfer of energy to the 

higher frequency components, allowing larger crest elevations to evolve. 

 

 

 

 
We have previously noted in section 3 that laboratory data reported by Johannessen & Swan (2001 & 2002) 

confirm that these energy transfers are strongly dependent on the underlying directionality. This is further 

confirmed by the calculations presented on Figure 5. These again describe crest elevations vs exceedence 

probabilities for the JONSWAP spectrum noted previously, but in this case involve directionally spread waves 



with a wrapped normal standard deviation of 30º. This shows a marked reduction in nonlinearity with 

directional spread. 

 

 

 

 

5.0 CLOSING REMARKS 

 

The extent to which the present results are representative of wide-ranging wave conditions remains unclear. It is 

also important to acknowledge that there remains considerable work to be done in respect of basing the 

optimisation on the fully nonlinear description of the water surface elevation. Nevertheless, the results are 

interesting in that they confirm the importance of directionality and suggest that provided a sea state has a 

significant directional spread, crest elevation statistics based on the second-order theory of Sharma & Dean 

(1981) may well provide a very realistic representation. However, they also suggest that if the directionality 

reduces very different conclusions may be drawn. Indeed the results that one possible explanation for the 

occurrence of unexpectedly large waves (commonly referred to as ‘freak’ or ‘rogue’ waves) may be the extreme 

nonlinear interactions that can arise as the directionality of the wave field reduces. 
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