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1.0 INTRODUCTION

The prediction of extreme crest elevationsis fundamental to the design of marine structures, irrespective of
whether they are intended for deep-water offshore locations or shallow-water coastal locations. In undertaking
design extreme crest elevations, specified in terms of either a1 in 100 year or 1in 10,000 year event, are
relevant to both the overall geometry of the structure, particularly the setting of deck elevations, and the sizing
of individual members necessary to support the applied loads. For example, in the design of afixed structure
deck elevations are traditionally set to maintain an effective air-gap, thereby preventing the impact of even the
largest wave crests on the underside of the deck structure. In contrast, the wave-induced forcing acting on the
legs of the structure cannot be avoided and must be carefully assessed. |If the relevant K eulegan-Carpentar
number (KC) islarge,
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where L] isthe amplitude of the horizontal wave-induced orbital velocity, T isthe wave period and D isthe
diameter of the cylindiical leg, the forcing will be drag dominated. In this case, the forcing is dependant upon
the square of the wave-induced orbital velocity. Asaresult, the maximum horizontal forcing, contributing to
both the maximum base shear and the maximum over-turning moment, occurs directly beneath the largest wave

crests and its magnitude increases with the square of the wave amplitude.

Other examples where the assessment of extreme crest elevationsiscritical to the design process include the
design of floating structures, particularly the determination of the applied |oads, the corresponding vessel
response and the occurrence of green water inundation. Likewise, crest elevations are also key to the design of
coastal structures for shoreline protection and flood prevention. In these cases some degree of over-topping may

be permissible, but its estimation must be based upon a clear understanding of extreme crest height distributions.

Given the practical importance of extreme crest height distribution, the starting point for this paper liesin two
recent advances. First, the development of methods based on spectral response surfaces (Tromans & Suastika
(1998)). When this approach is combined with afirst order reliability method (FORM) it allows the rapid



determination of design criteria associated with the occurrence of extreme events. Secondly, the recent
development of new wave models alowing an exact (or fully nonlinear) description of the evolution of large
waves within realistic sea states that are broad-banded in terms of their frequency spectrum and directionally
spread. The purpose of the present paper isto combine these approachesin an attempt to determine whether the
distribution of extreme crest heightsis significantly affected by the nonlinearity of the local wave field and to

investigate therole played by directionality.

The paper commencesin 82 with abrief description of the spectral response surface method, its application to
the prediction of extreme crest heights and itsrelation to the NewWave model (Tromans et al (1991)). Section 3
outlines recent developmentsin the descriptions of extreme waves, explaining how recent models may be
applied to provide fully nonlinear calculations of extreme transient waves that are broad-banded in both
frequency and direction. Section 4 combines the methods outlined in 82 and §3 compares anumber of resultsin
which crest elevations with a given probability of exceedence are calculated using alinear, second-order and a
fully nonlinear wave model. Although some aspects of these results are preliminary, new results are presented
and discussed and the significance of nonlinearity in determining crest heights clearly identified. The paper
concludesin 85 with a summary of the cal culations made to date, an assessment of their practical significance

and a discussion of additional work that is both on-going and planned.

2.0 SPECTRAL RESPONSE SURFACESAND CREST HEIGHT ESTIMATIONS

In broad terms the spectral response surface (SRS) method involves the application of conventional first order
second moment reliability methods (FORM), Madsen et a. (1986) and Melchers (1987), to problemsinvolving
aspectral representation. The method has previously been applied to several important issuesin ocean
engineering including extreme |oads on space frame structures (Tromans & Van Dam (1996)), the ‘ringing’ or
dynamic response of offshore structures (Tromans & Suastika (1998)), the shape and history of extreme crest
elevations (Tromans & Taylor (1998)) and, more recently, second-order estimates of crest statistics (Tromans &
Vanderschuren (2002)).

In the latter case the method effectively involves random directional wave modelling in the probability domain.
This hastwo distinct advantages. First, the SRS method enables a number of linear theories for the distribution
of maximaand the structure of aprocessin the vicinity of these maxima (Lindgren (1970), Tromanset al.

(1991) & Phillipset a. (1993)) to be generalised for problemsinvolving nonlinearity. Secondly, it avoidsthe
need for long time-domain simulations. This becomes particularly important with increasing nonlinearity. If a
sea state is assumed linear, time-domain simulations are easily undertaken, but largely irrelevant given the
theories noted above. If it isassumed to be weakly nonlinear, and modelled using second-order theory (Sharma

& Dean (1981)), time-domain simulations are straightforward (Forristall, 1998) but computationally intensive.



With increased nonlinearity, including third and higher-order effects, long time-domain simulations are simply
not possible. Since the purpose of the present paper is to investigate the influence of fully nonlinear wave
calculations on crest statistics, the SRS method is an obvious choice.

Adopting alinear representation, the ocean surface elevation may be defined by the sum of alarge number (N)

of random, narrow-banded, frequency components, each of which is normally distributed. All of the

components are assumed independent and uncorrelated. |f g; isthe random amplitude of the ™ component (I £
£ N) w its frequency, k; the wave number vector (kXj K, ) q ; the random phase angle and t the time, the

water surface elevation may be written as:

N N
h®t)=4h,=4a, Cos(, + k, x- w,t) @1
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Where the superscript (Y indicates the first order or linear approximation and x defines the horizontal spatial

location.

Following earlier work the frequency components can be transformed onto standardised (unit variance, zero

mean) variables by dividing each by its standard deviation.

X, =— and X, =— (22)
S .

where the superscript ~ indicates aHilbert transform. In the present context the Hilbert transform of avariable

may be thought of asthe value of the variable with its phase shifted by p/2. Consequently, S~j =S .

Combining equations (2.1) and (2.2) it is easily shown that

a; = ((S iX] )2 + (S~j X )2)E 23

and

5
q, = tan'lé—Jj (24)
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Accordingly, it isclear that if a FORM is applied to provide a solution in terms of the standardised variables
(Xj, )'ZJ- ) the component amplitudes and their phasing can be defined. It therefore follows that the local water
surface profile and the crest elevation are also defined. Recalling that the joint density function of the
standardised variables (X]- , YJ- )is aunit variance normal and that the variables are uncorrel ated, the surfaces of

constant probability density are concentric spheres in the space of the standarised variables. The probability

density ishighest at the origin and falls monotonically as afunction of distance from the origin.

Inatypical FORM analysis one might identify a surface of constant response (in our case agiven crest

elevation) and would then seek to identify the point on the surface that lies closest to the origin. Thisis denoted
as the design point (XJ ) ?1 )and its distance from the origin gives the probability that the specified response will

occur. Inthe present case we adopt a different approach in which we search along a given hyper-sphere of
constant probability in order to find the maximum response for a given probability of exceedence. Although
different, the design point islocated using established procedures based on Lagrange’ s method of undetermined
multipliers (Melchers, 1987).

In earlier related work Tromans & Vanderschuren (2002) have adopted exactly this approach and have
demonstrated that the SRS method isin very good agreement with statistical distributions based on atime-
domain analysis for exceedence probabilities from 0.5 down to 5x10°%. For valuesless than 5x107 small
differences arise but they may be accounted for in terms of the scarcity of data relating to the description of
extreme crests in the time-domain simulation. They also implemented the second-order description of the water
surface elevation due to Sharma & Dean (1981) and showed that when thisis optimised using the SRS method
the resulting crest elevations are in very good agreement with the simple process of applying a second-order

correction to the linear NewWave (Tromans et al (1991)).

3.0 RECENT ADVANCESIN WAVE MODELLING

Itiswell established that large ocean waves do not arise as part of aregular wave train, but occur asisolated and
transient events within arandom or irregular sea, which is broad-banded both in its frequency and its directional
distribution. In order to describe the evolution of such wavesit has been shown that an appropriate wave model
must be unsteady (or capable of incorporating the underlying frequency distribution), fully nonlinear (since we
are primarily concerned with the largest waves), and able to incorporate the directional spread. Until very
recently (Bateman, Swan & Taylor (2001)) it has not been possible to incorporate these three key requirements.

Indeed, in terms of engineering design most of the commonly applied wave models either incorporate the



nonlinearity (eg fifth-order Stokes model (Fenton, 1985)) or the unsteadiness (eg linear random wave theory)
and do littlein regard of the directionally.

The motivation behind the development of this new class of wave model serves as an excellent of the interplay
between laboratory observations, field data and numerical calculations. Theinitial interest in the nonlinearity of
these waves and, in particular, itsrelationship to directionality, arose as aresult of comparisons between an
analysis of field observations reported by Jonathan & Taylor (1996) and laboratory observations reported by
Baldock, Swan & Taylor (1996). Inthislatter study data defining the water surface elevation corresponding to a
number of uni-directional wave groups were reported and comparisons with linear theory suggest that the waves
may become very nonlinear, with maximum crest elevations as much as 40% larger than linear theory and 30%
larger than second-order theory. In contrast, the field observations suggest that for the waves observed the crest

€levations were reasonably well predicted by second-order theory, indicating only weak nonlinearity.

An obvious explanation for this difference liesin the directionality of real ocean waves. Accordingly,
Johannessen & Swan (2001) undertook a second and very detailed laboratory study in which focussed waves
were generated with varying directional spread ranging from uni-directional cases (confirming the earlier

findings of Baldock, Swan & Taylor (1996)) to very short-crested waves involving alarge directional spread
(s=7, where sisthe Mitsuyasu spreading parameter). In thisand much of the subsequent discussion the notion
of a‘focussed’ wave merely defines onein which the phasing of the freely propagating wave components and/or
their direction of propagation is pre-determined so as to achieve the summation of wave crests at one point in
space and time. This represents the most effective method of achieving alarge isolated wave crest within a
broad-banded sea state and is believed to be representative of the evolution of large wavesin thefield. Indeed,
this concept of focusing lies at the heart of the (linear) NewWave Model that has been successfully compared to
anumber of field observations (Razario et a (1990)).

The data presented by Johannessen & Swan (2001) confirm that the directionality is very significant in relation
to the overall nonlinearity of the largest waves and offers a possible explanation for the difference between uni-
directional laboratory dataand field observations. Indeed, the influence of directionality was so significant that

the results cast considerable doubt on the desirability of undertaking model studies using uni-directional waves.

To further examine the influence of directionality Johannessen & Swan (2002) sought to investigate the
laboratory datafurther. To achieve thisthey required both temporal and spatial descriptions of the water surface
elevation, h(t) and h (x,y) respectively, where (X , y) define ahorizontal plane located at the still water level
and t thetime. Although the former description can be provided by laboratory observations, the latter cannot or,
at least, not with sufficient resolution. Accordingly, Johannessen & Swan (2002) adopted a three-dimensional

extension of an exact uni-directional wave model proposed by Fenton & Rienecker (1982). Thismodel is based



upon an approach first proposed by Longuet-Higgins & Cokelet (1976). If the wave motion is assumed
irrotational, the nonlinear free surface boundary conditions can be expressed as:

h =f,-hf, -hf (31)

y
1|~
f =-gh- E‘Nf|2 32

Where zis measured from the still water level upwards, g is the gravitational acceleration andf isthe velocity

potential defined so that the velocity componentsin the (X, Y, Z) directions are given by (u, Vv, W)
=Nf = (ﬂx Rl v 1, )f . These conditions respectively define the kinematic and dynamic free surface boundary

conditions, which require the fluid at the free surface to remain there and the pressure on the water surface to be

constant. Using these equations (or their uni-directional equivalent) Longuet-Higgins and Cokelet noted that if

one had a spatial description of thewave field at someinitial time t =1, h(X, Y, to) and

f (X, y,z=hg,t, ) , equations (3.1) & (3.2) can be used to time-march the wavefield to all subsequent times.

Expanding the method of Fenton and Rienecker (1982), Johannessen & Swan (2002) achieved extremely good
description of the evolution of the laboratory -scale wave field. Unfortunately, the computational efficiency of
this method in such that it cannot be readily applied to problemsinvolving the very large range of length-scales
appropriate to realistic ocean spectra. This problem has now been overcome by Bateman, Swan & Taylor (2001
& 2002). Inthisseriesof papersthey adopted the highly efficient computational procedure proposed by Craig
& Sulum (1993) and again extended the method to apply to directionally spread waves. The overriding
advantage of thistechnique isthat by applying a Taylor series expansion of the Dirichlet-Neumann operator the
solution can be formulated in terms of the surface parameters alone. This dimensional reduction yields
considerable computational savings, not least because it avoids the need for the large matrix inversion on which
both the Fenton & Rienecker (1982) and the Johannessen & Swan (2002) modelsrely. Asaresult, the model
proposed by Bateman, Swan & Taylor (2001), and its subsequent extension to include the calculation of the
water particle kinematics (Bateman, Swan & Taylor 2002), alow the evolution of realistic broad-banded spectra
(in both frequency and direction) to be cal culated with high accuracy.

Thiswave model represents the state-of-the-art in terms of wave predictions and lies at the heart of the present

study. To apply the model one simply needs to identify the underlying frequency and directional spectraand to

choose aninitial time, t =1, at which thewavefieldisfully dispersed. With no large waves present within

the computational domain, alinear solution can be used to specify theinitial conditions, h (X, Y, to) and



f (X, V,Z= h, t0 ) , and the sol ution time-marched to provide afully-nonlinear description of an extreme wave

event that is, to al intents and purposes, exact.
4.0DISCUSSION OF RESULTS

Theresults presented in this section correspond to a JONSWAP spectrum in deep water with a peak period of
T, =12.8s, asignificant wave height of Hs=12.0m and a peak enhancement factor of g = 2.3. Initial calculations
for thisand several other cases confirm that if the water surface elevation is described by alinear model the
exceedence probabilities of crest elevations calculated using the SRS method exactly reproduce the values given
by the Rayleigh distribution. Likewise, the water surface elevations, (t), corresponding to these extremes are
identical to the corresponding NewWave profiles (Tromans et al (1991)).

Having reproduced the established linear behaviour, a second set of calculations sort to identify the difference
between:

(@) Applying the SRS method to a second-order description of the water surface elevation based on the
analytical solution proposed by Sharmaand Dean (1981). This provides alinear input spectrum that
has been optimised to take account of the second-order frequency-sum and frequency-difference terms.

(b) Applying the SRS method to alinear description of the water surface elevation and having identified
the crest elevation (and the corresponding wave profile) for a given exceedence probability, applying a
second-order correction again using the solution due to Sharmaand Dean (1981). The principle
difference being that in this case the linear input spectrum has been optimised on the assumption that

the seasurfaceislinear.

Theresults of this process are given on Figures 1aand 1b which respectively contrast the water surface
elevation, ?(t), and the underlying frequency spectrum, a(?). The difference between the resultsis small and

appears to be consistent with the earlier findings of Tromans & Vanderschuren (2002).

Having established the success of the approximate method outlinedin (b) above, a similar approach is adopted
in respect of the fully nonlinear numerical calculations. Although this approach cannot, asyet, be fully justified
the results do, at least, give some guidance as to the significance of the fully nonlinear interactions. At this point
itis perhaps relevant to note that work is presently on-going to determine alinear input spectrum which has
been optimised to take account of the full nonlinearity. Unfortunately, thistask is extremely time consuming
sinceit involves repeated runs of the fully nonlinear model at each stage of the optimisation process. However,
at this stage our preliminary results suggest that thereislittle difference in the extreme values produced,
particularly asthe directionality increases,
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Figure 2 presents the results arising from the linearly optimised solution (method (b) above) and contrasts the

crest elevation for a given probability of exceedence for alinear, a second-order and afully nonlinear

simulation. These results relate to a uni-directional wave field and suggest that in the case of the largest waves

the contribution from the third and higher-order terms may be at |least as large as those arising at second order.



Confirmation of thisisgiven in Figure 3, which contrasts the wave profiles corresponding to the second-order
model and those from the fully nonlinear calculations.

Figure 2: Maximum crest elevations for various probabilities of exceedance
in uni-directional wavefield
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The wave profiles corresponding to three of the fully nonlinear cases are presented on Figure 4a. In the largest
wave casesit is clear that the crest-trough asymmetry becomes very marked. Thisis consistent with the earlier

experimental observations reported by Baldock, Swan and Taylor (1996) and isin part explained by the changes



in the wave spectra noted on Figure 4b. Asthe wave height increases there is a marked transfer of energy to the

higher frequency components, allowing larger crest elevationsto evolve.

Figure 4a: Surface profiles of three waves with varying probability of exceedence (2]
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We have previously noted in section 3 that laboratory data reported by Johannessen & Swan (2001 & 2002)

confirm that these energy transfers are strongly dependent on the underlying directionality. Thisisfurther

confirmed by the calculations presented on Figure 5. These again describe crest el evations vs exceedence

probabilities for the JONSWAP spectrum noted previously, but in this case involve directionally spread waves



with awrapped normal standard deviation of 30°. This shows amarked reduction in nonlinearity with

directional spread.

Figure 5: Maximurm crest elevations for various probahbilities of exceedence
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50 CLOSING REMARKS

The extent to which the present results are representative of wide-ranging wave conditions remains unclear. Itis
also important to acknowledge that there remains considerable work to be done in respect of basing the
optimisation on the fully nonlinear description of the water surface elevation. Nevertheless, the results are
interesting in that they confirm the importance of directionality and suggest that provided a sea state has a
significant directional spread, crest elevation statistics based on the second-order theory of Sharma & Dean
(1981) may well provide avery realistic representation. However, they also suggest that if the directionality
reduces very different conclusions may be drawn. Indeed the results that one possible explanation for the
occurrence of unexpectedly large waves (commonly referred to as‘freak’ or ‘rogue’ waves) may be the extreme

nonlinear interactions that can arise as the directionality of the wave field reduces.
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