

Navigating Coastal Inundation in Rarotonga, Cook Islands: Probabilistic Risk Mapping and Forecasting

UNEP CIS-PAC 5 project

Antonio Espejo, Moritz Wandres, Gregoire Salles, Judith Giblin, Herve Damlamian, Matt Blacka, Maara Vaiimene

Pacific Community (SPC), Fiji

Santander, September 2025

New York Washington, D.C.

lorthern Group

Coastal Inundation in the Cook Islands

Severe TC Meena, Feb 2005

Coastal Inundation in the Cook Islands

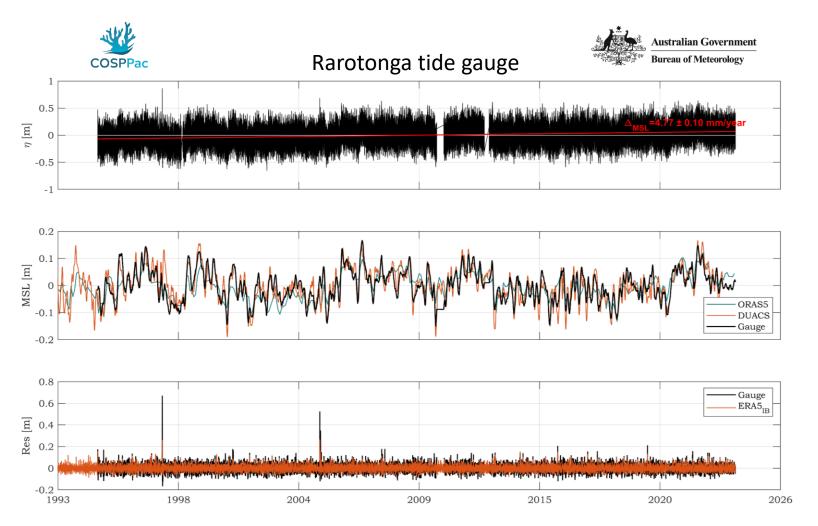
July 2022 Swell

- Waves: + 4.5 m and + 16 s
- Damage to hotels, homes and businesses
- Washed out coastal defenses, left huge boulders across the road

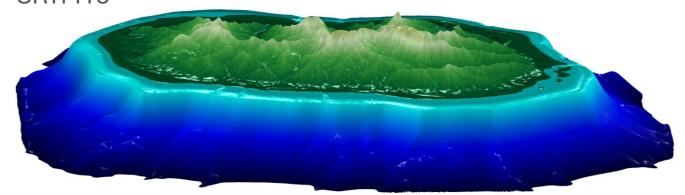
Source: https://x.com/MattBlacka/

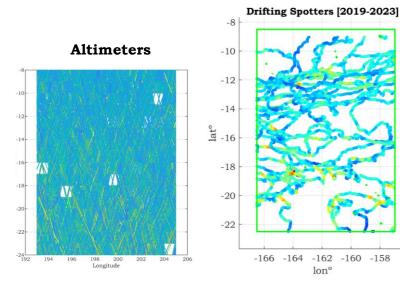
Goals

- Develop island scale probabilistic inundation maps that combine swells, tropical cyclones and SLR using state-ofthe-art tools and methodologies.
- Establish an actionable **early warning system** to forecast coastal flooding up to 7 days in advance.
- Work closely with the Cook Islands Meteorological Service and Emergency Management Office to codesign, build trust, and ensure long-term ownership.



What dominates water levels?





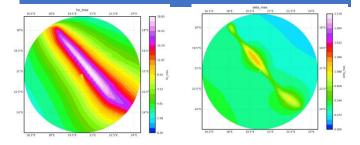
Baseline data

Seamless topobathy 5m = LiDAR + Multibeam + SRTM15

Oceanographic data

- Tide gauges
- Altimeters
- Fixed buoys
- Drifting buoys

Fixed buoys



SWAN

Simulating WAves Nearshore

SWAN 2D

- Downscale waves to the island resolution
- TC waves

ADCIRC

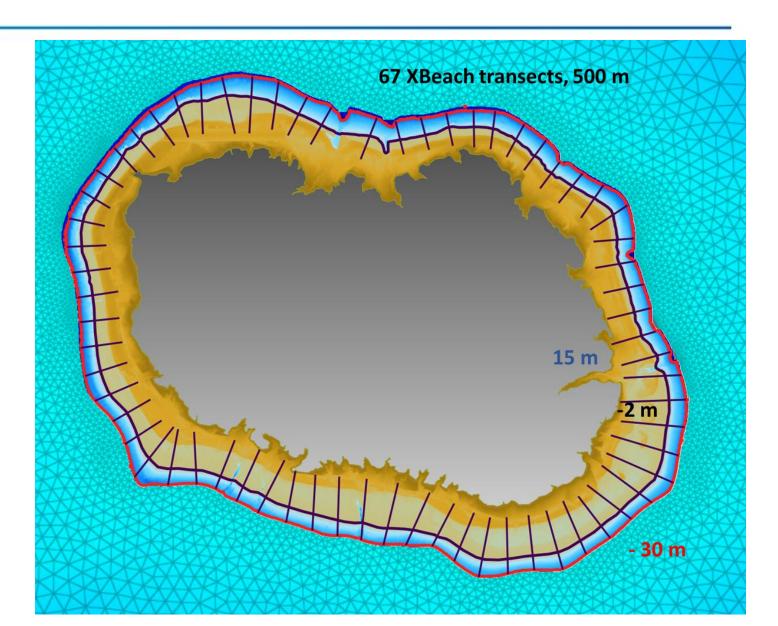
ADCIRC 2D

- Tides
- TC storm surge

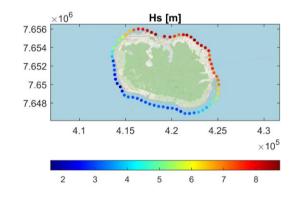
XBeach NH 1D

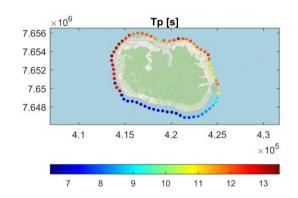
- Wave transformation processes
- IG waves and runup

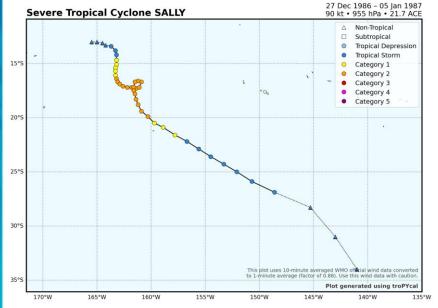
SFINCS 2D


Compound flooding

- 1) Extract wave parameters from hindcast [Hs,Tp,Dir,Dispr,Fspr], tide (TPXO9), SLA (ORAS5), and IB (ERA5)
- 2) Run XBeach profiles
- 3) Extract free surface elevation time series at the intersection with the 2 m contour
- 4) Run SFINCS

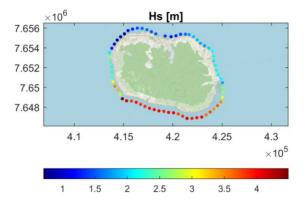


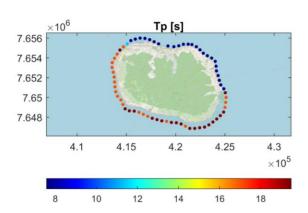


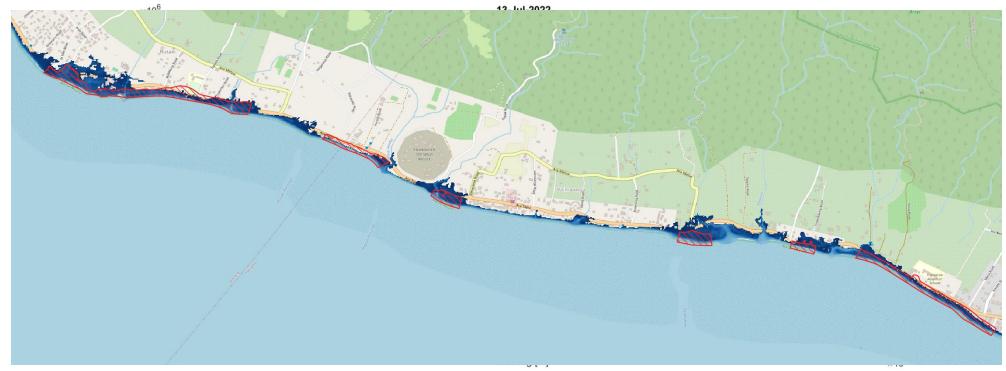


Tropical Cyclone Sally, Coastal Inundation Impacts

Rarotonga, Cook Islands, 2nd January 1987

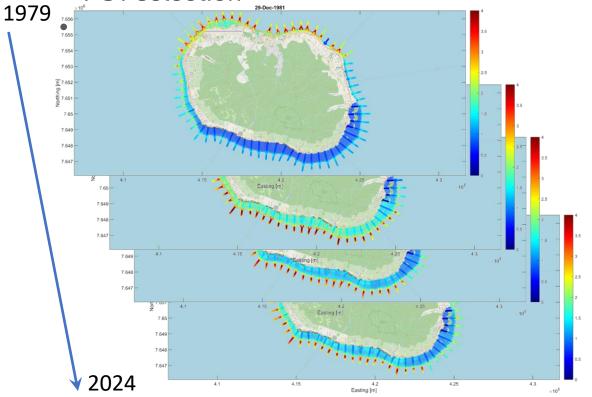




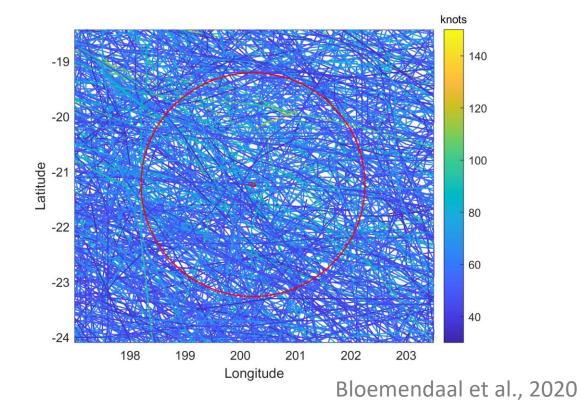


July 2022 Coastal Inundation Event

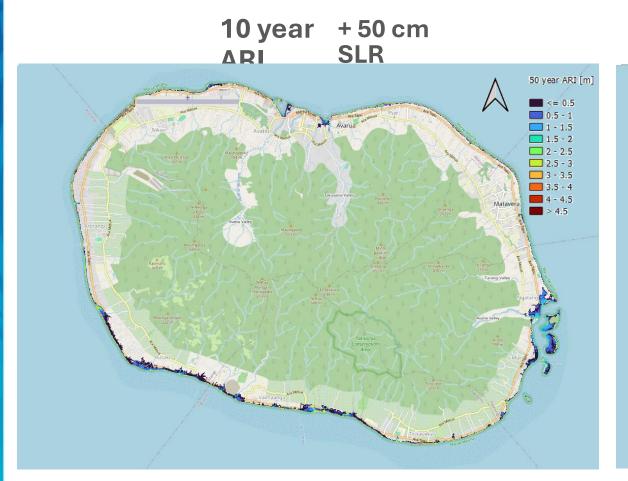
Rarotonga, Cook Islands

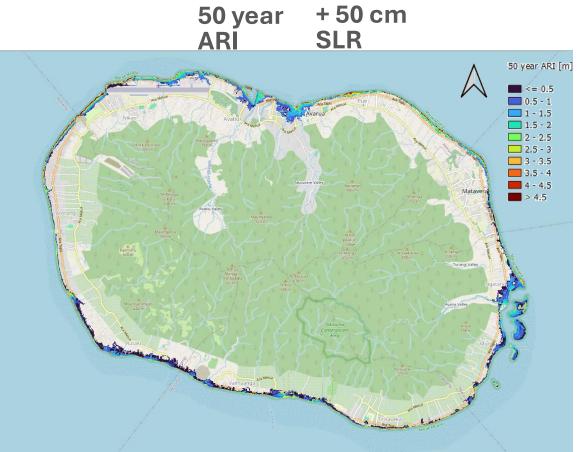

Probabilistic Hazard Assessment

Swells

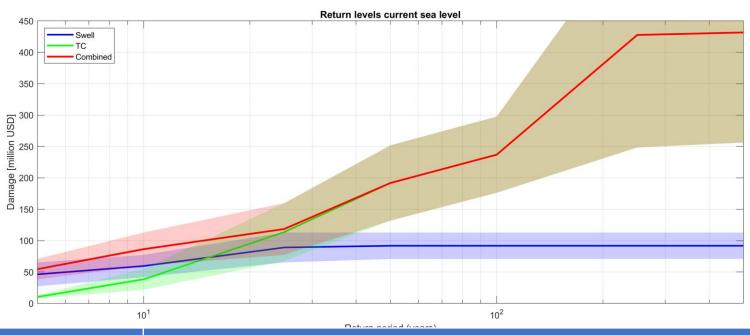

- Well represented in the high-res hindcast
- Remove near field TC related events

POT selection

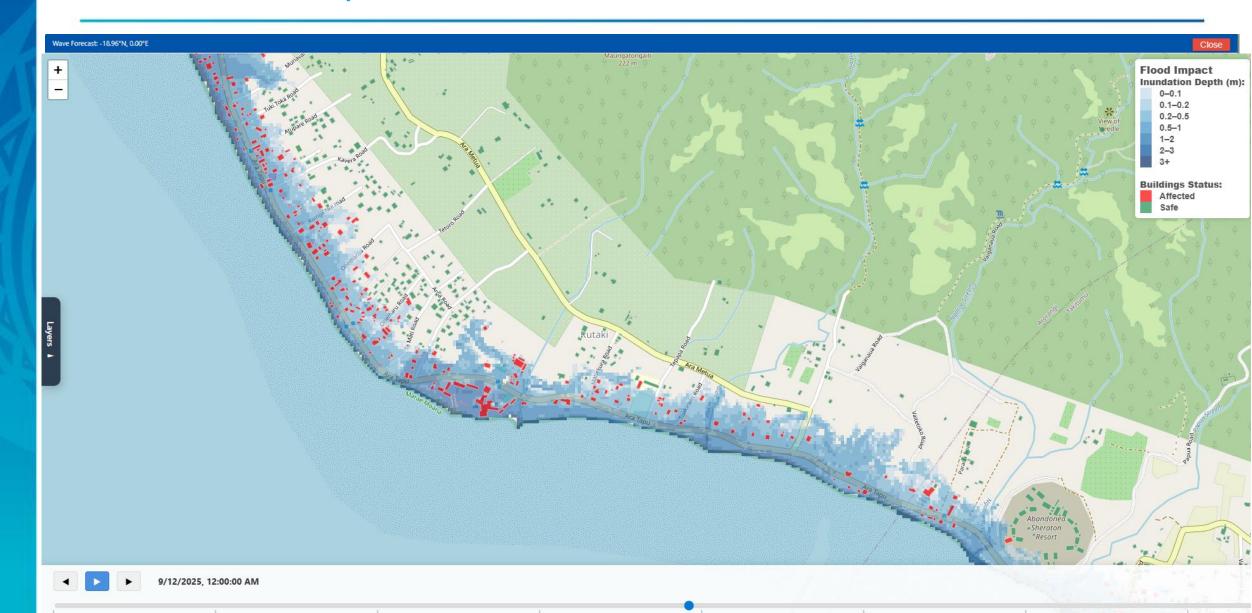

Tropical Cyclones


- Only 20 TCs from 1979 2023 less than 200 Km from Rarotonga, only two > Cat 2
- Stochastic simulation of TC tracks needed, ~ 370
 TCs in 1000 years from STORM database
- ADCIRC+SWAN

Hazard Maps



Probabilistic Risk Assessment



SLR [cm]	Expected Annual Damage [Million USD/year] PCRAFI 2025*													
	Swells	TCs	Combined											
0	6.1	5.2	11.4 [9.1–13.8]											
25	8.9	6.9	15.8 [12.6-19]											
50	13.4	9.3	22.7 [18.2-27.13]											
100	30.8	17.1	47.9 [39.8-55.15]											

Towards Impact Based EWS

Takeaways

- Integrated multi-model approach to reproduce observed coastal inundation events in reef fronted islands
- Compromise between accuracy and computational cost, focused on the most dominant processes and time scales
- Modular and scalable to other Pacific islands
- Actionable Impact-based EWS, co-designed and owned by CIMS
- Project outcomes support long-term planning, disaster preparedness, and community resilience
- Weather Ready Pacific, UN EWS4all, UN OceanPredict...

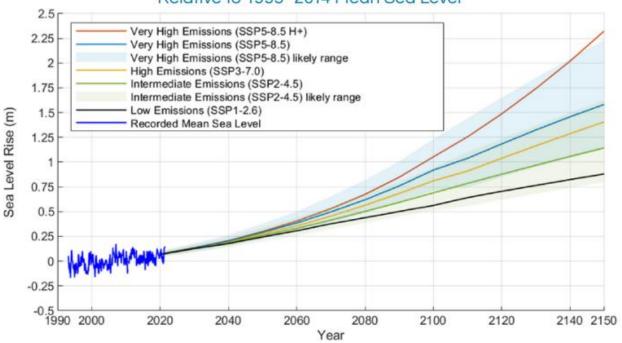
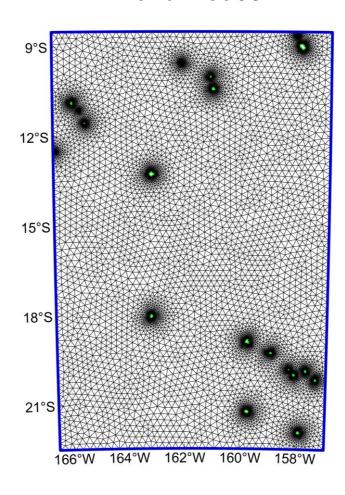
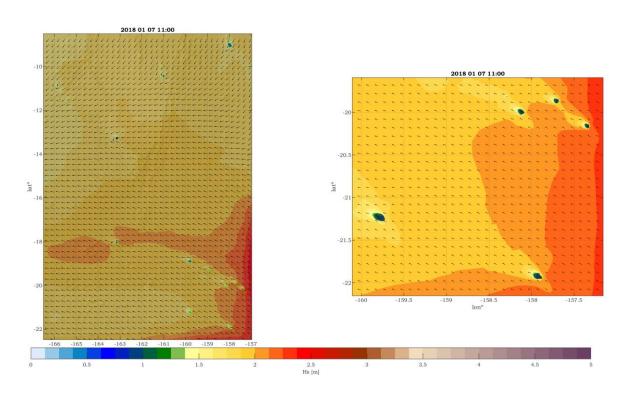


Figure 3.4: Sea Level Rise Projections to 2150 for the Cook Islands
Relative to 1995–2014 Mean Sea Level

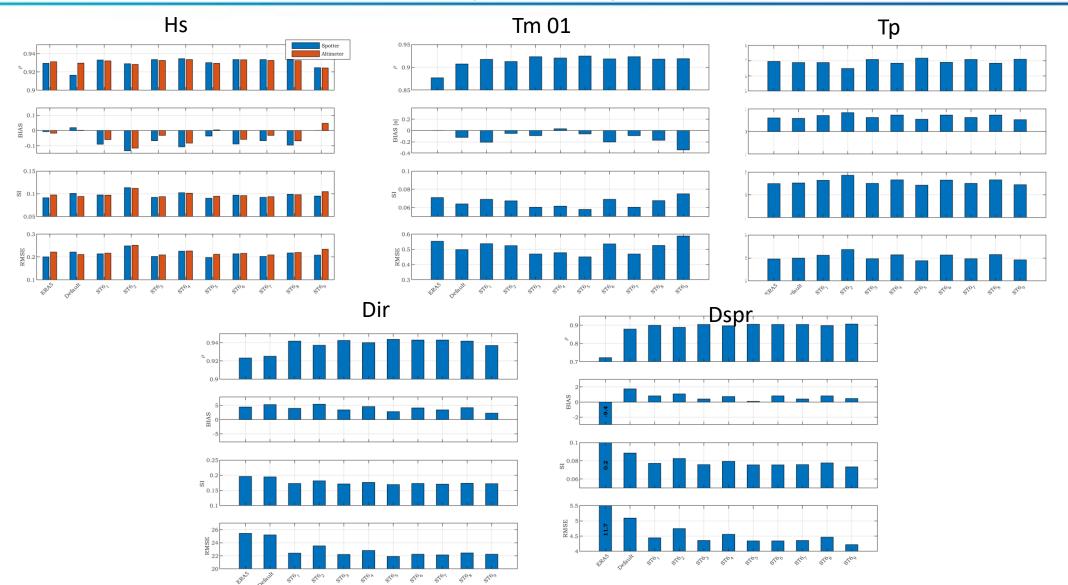
Notes:


- 1. Shared Socioeconomic Pathway (SSP); H+ represents low confidence high consequence scenario.
- 2. Projections based on IPCC (2021), sourced from AR6 and interpolated to nearest decade and adjusted for the upper bound of the *most likely* vertical land movement as defined by Fox-Kemper et al. (2021).
- 3. Projections are given for the 50%ile of the CMIP6 model ensemble unless otherwise defined.

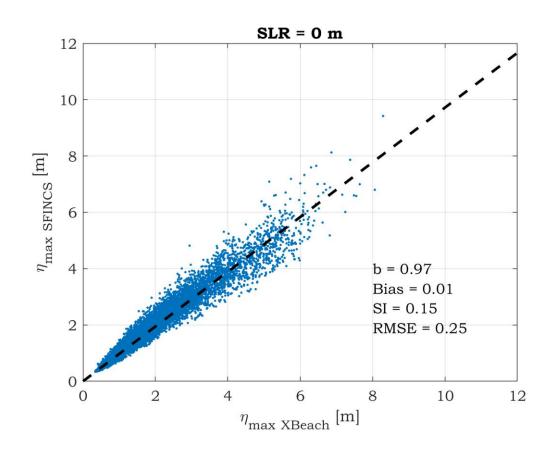

High-resolution Un-SWAN model

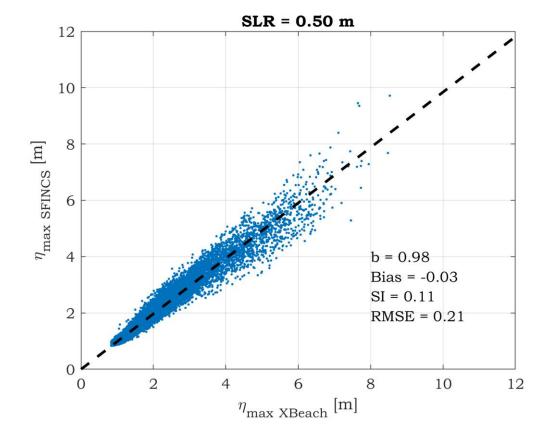
44820 nodes

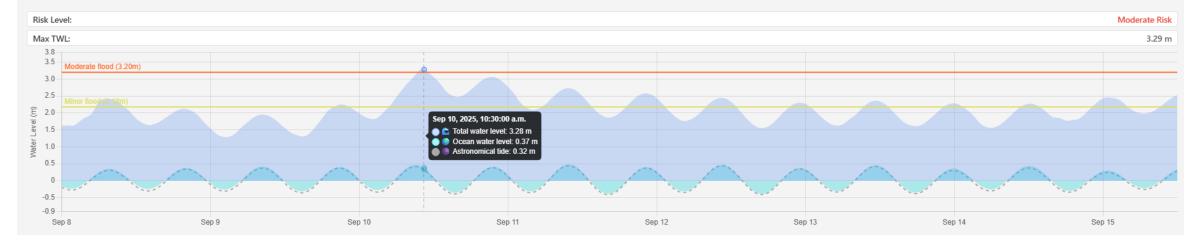
...from 25 Km to 100 m...


Un-SWAN sensitivity analysis

Run ID	Configuration	Description
ERA5	ERA5	
Default	Standard setup with SWAN default parameters	Standard Komen physics (GEN3)
ST6 ₁	GEN3 ST6 4.7E-7 6.6E-6 4.0 4.0 UP HWANG VECTAU U10PROXY 28.0 AGROW	Low-growth, Hwang wind input, vector τ , U10 proxy, wave age 28
ST6 ₂	GEN3 ST6 4.7E-7 6.6E-6 4.0 4.0 UP FAN VECTAU U10PROXY 28.0 AGROW	Same as above but FAN wind input
ST6 ₃	GEN3 ST6 2.8E-6 3.5E-5 4.0 4.0 UP HWANG VECTAU U10PROXY 32.0 AGROW	Moderate-growth, Hwang input, wave age 32
ST6 ₄	GEN3 ST6 2.8E-6 3.5E-5 4.0 4.0 UP HWANG VECTAU U10PROXY 32.0 DEBIAS 0.89 AGROW	Same as Run 4 but with 0.89 wind bias correction
ST6 ₅	GEN3 ST6 6.5E-6 8.5E-5 4.0 4.0 UP HWANG VECTAU U10PROXY 35.0 AGROW	High-growth, Hwang input, wave age 35
ST6 ₆	GEN3 ST6 4.7E-7 6.6E-6 U10P 28. AGROW	Simplified wind input, wave age 28
ST6 ₇	GEN3 ST6 2.8E-6 3.5E-5 U10P 32. AGROW	Simplified wind input, wave age 32
ST6 ₈	GEN3 ST6 5.7E-7 8.0E-6 4.0 4.0 UP HWANG U10PROXY 28.0 AGROW	Mid-growth, Hwang input, wave age 28
ST6 ₉	GEN3 ST6 5.7E-7 8.0E-6 4.0 4.0 UP AGROW	Mid-growth, unified input, wave age 28


Un-SWAN sensitivity analysis





Wave Forecast: -18.96°N	N, 0.00°E	1270	1000	1270	1756	1270	1276	1000	1000	1000	2000	1000		1000											- Contra	- F. Da																		Close
UTC	Mon 8 02:00	Man 8 05:00	Man 8 06:00	Man 8 11:00	Mon 8 14:00	Man 8 17:00	Man 8 20:00	Man 8 23:00	Tue 9 02:00	Tue 9 05:00	Tue 9 08:00	Tue 9 11:00	Tue 9 14:00	Tue 9 17:00	Tue 9 20:00	Tue 9 23:00	Wed 10 02:00	Wed 10 05:00	Wed 10 08:00	Wed 10 11:00	Wed 10 14:00	Wed 10 17:00	Wed 10 20:00	Wed 10 23:00	Thu 11 02:00	Thu 11 05:00	Thu 11 08:00	Thu 11 11:00	Thu 11 14:00	Thu 11 17:00	Thu 11 20:00	Thu 11 23:00	Fri 12 02:00	Fri 12 05:00	Fri 12 08:00	Fri 12 11:00	Fri 12 14:00	Fri 12 17:00	Fri 12 20:00	Fri 12 23:00	Sat 13 02:00	Sat 13 05:00	Sat 13 08:00	Sat 13 11:00
Wave (m)	3.2	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.4	2.3	2.2	2.1	2.0	1.9	1.9	1.8	1.8	1.8	1.8	1.9	2.0	2.1	2.3	2.3	2.3	2.3	2.2	2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.8	1.7	1.7	1.6	1.6	1.5	1.5
Wave period (s)	8.4	8.4	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	13.5	12.3	12.3	12.3	12.3	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
Wave direction (→)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	7	1	1	1	1	1	1	1	1	1	1	1	1	ĸ	ĸ	ĸ	ĸ	K	1	1	7	7	7
Wave energy (kl)	147	150	160	148	140	130	118	107	95	85	78	72	67	62	57	54	52	52	54	57	62	71	121	119	119	113	105	89	82	78	79	81	81	80	79	75	69	63	58	54	51	48	46	44
1.5well (m)	0.4	0.4	0.5	0.6	0.7	0.8	0.8	2.5	2.4	2.2	2.1	2.1	1.9	1.8	1.8	1.7	1.7	1.7	1.6	1.5	1.5	1.6	1.9	2.0	2.0	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.3	1.3	1.2	1.1	1.1	1.0	1.0	1.0	1.3	1.0	1.0
1.Swell period (s)	10.3	13.8	14.0	13.8	13.6	13.5	13.2	9.1	9.1	9.1	9.1	9.1	9.2	9.2	9.2	9.2	9.2	9.2	9.3	9.3	9.3	13.6	13.3	13.1	12.6	12.4	12.2	12.0	11.6	11.4	11.3	11.2	11.2	11.3	11.5	10.5	11.6	11.5	11.4	11.3	11.3	10.1	11.2	11.2
1.Swell direction (→)	7	7	1	1	1	1	1	+	+	+	←	←	+	+	←	+	←	←	←	+	←	7	7	1	1	1	1	1	1	1	1	1	1	7	7	K	1	7	1	1	1	*	7	7
2.Swell (m)	0.2	0.3	0.3			0.2	0.2	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.5	0.4	0.5	0.7	0.8	0.9	1.3	1.4	1.4	1.3	1.3	1.2	1.2	1.2	1.3	1.3		0.4				1.2					0.5	1.0		
2.5well period (s)	14.8	10.1	10.0			14.8	14.9	12.8	12.5	12.2	12.1	12.0	6.8	6.8	12.2	12.7	11.9	11.6	11.4	11.0	14.3	9.3	9.3	9.3	9.3	9.4	9.5	9.9	10.3	10.8		11.3				11.7					10.7	11.2		
2.5well dir. (→)	7	7	7			7	7	1	1	1	1	1	7	4	1	7	7	7	7	7	7	←	←	4	←	4	4	4	4	4		ĸ				1					ĸ	1		
Wind wave (m)	3.2	3.2	3.2	3.0	2.9	2.8	2.6																								1.4	1.5	1.6	1.6	1.6	1.0	1.5	1.5	1.4	1.4	1.2		1.2	1.2
Wind wave per(s)	8.7	8.9	9.2	9.2	9.2	9.2	9.1																								10.8	10.4	10.8	10.8	10.8	5.2	10.4	10.3	10.3	10.2	10.0		10.1	10.0
Wind wave dit (→)	~	4	4	4	+	+	+		22	22	22		22	22	22		22	22			22										"	6				6	*				6	22	6	4

Coastal Risk Details - Rarotonga

