Community-Engaged Flood Modeling to Evaluate Pathways toward Sea-Level Rise Resilience

Thomas Thelen¹, Katherine Anarde¹, Casey Dietrich¹, Max Cawley³, Miyuki Hino²

4th International Workshop on Waves, Storm Surges, and Coastal Hazards – September 25, 2025

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

of LIFE+ SCIENCE

Coastal flooding is occurring more frequently outside of extreme storm and wave events

Cork, Ireland

(top left: NY Sea Grant bottom left: me walking home from the Workshop on Monday, bottom right: RTE, top right: Business Insider, top center: La Nueva Espana)

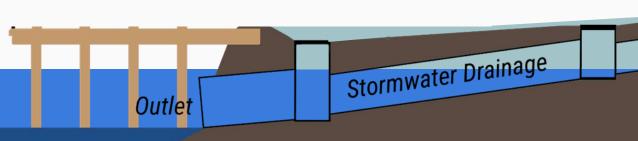
Drivers of chronic flooding

Ocean-scale flooding drivers:

- Tides (Hague et al., 2023)
- Wind setup (Coz et al., 2021)

Outlet

Drivers of chronic flooding


Ocean-scale flooding drivers:

- Tides (Hague et al., 2023)
- Wind setup (Coz et al., 2021)

Localized flooding drivers:

- Rainfall (Gold et al., 2023)
- Infrastructure (Obara et al., 2025)

Drivers of chronic flooding

Ocean-scale flooding drivers:

- Tides (Hague et al., 2023)
- Wind setup (Coz et al., 2021)

Localized flooding drivers:

- Rainfall (Gold et al., 2023)
- Infrastructure (Obara et al., 2025)

Sea-level rise (Sweet et al., 2022)

Spatial scale: several city blocks (Mydlarz et al., 2024)

Temporal scale: minutes to hours (O'Donnell et al., 2024)

Coastal flooding driven by **rainfall at high tide** in Carolina Beach, North Carolina (Source: Sunny Day Flooding Project camera)

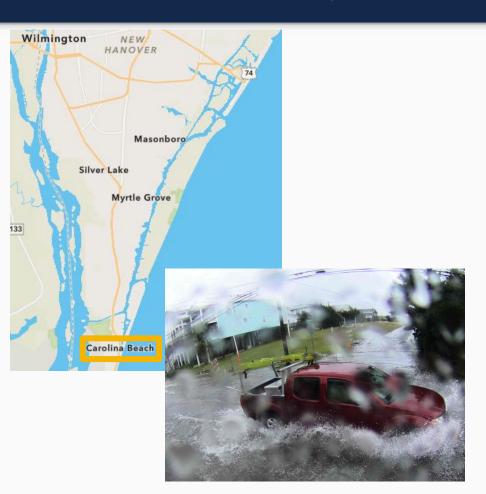
Gap #2: How to test the effectiveness (present & future), acceptability of adaptations?

Lesson learned from storm surge adaptation projects: involve community members in strategy selection (Rasmussen et al., 2023)

OPEN ACCESS | Technical Papers | Nov 22, 2022 Check for updates Coastal Defense Megaprojects in an Era of Sea-Level Rise: Politically Feasible Strategies or Army Corps Fantasies? This article has a reply. VIEW THE REPLY Authors: D. J. Rasmussen 10 M. Robert E. Kopp 10 M. and Michael Oppenheimer 10 M. AUTHOR AFFILIATIONS

Miami-Dade County Rejected An Army Corps Plan To Fight Storm Surge – Here's What The Corps Says Is Up Next

WLRN 91.3 FM | By Jenny Staletovich Published September 2, 2021 at 2:52 PM EDT



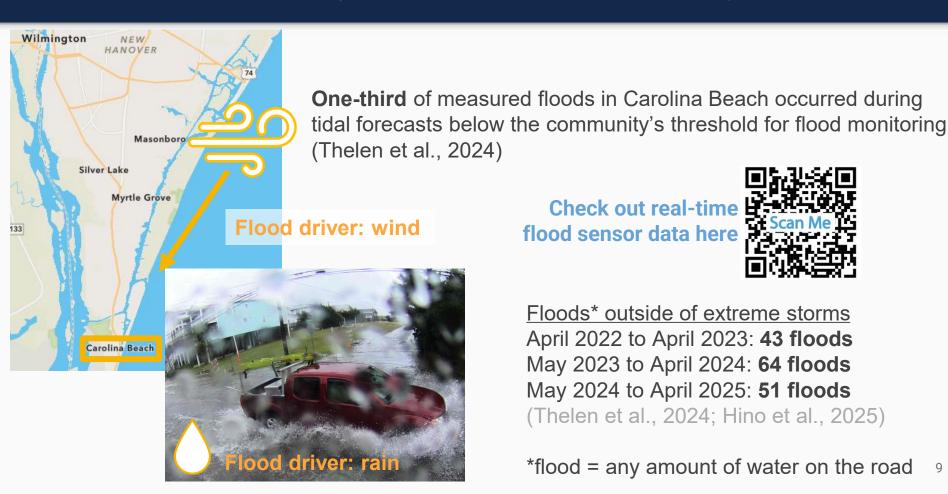
Carolina Beach, North Carolina, USA: overland flooding & impaired stormwater networks

Sensor data: Carolina Beach experiences 40 to 65 floods yearly outside of extreme storms

Check out real-time flood sensor data here

Floods* outside of extreme storms

April 2022 to April 2023: 43 floods


May 2023 to April 2024: **64 floods**

May 2024 to April 2025: **51 floods**

(Thelen et al., 2024; Hino et al., 2025)

*flood = any amount of water on the road

Sensor data: Wind and rain compound with tides to exacerbate flooding in Carolina Beach

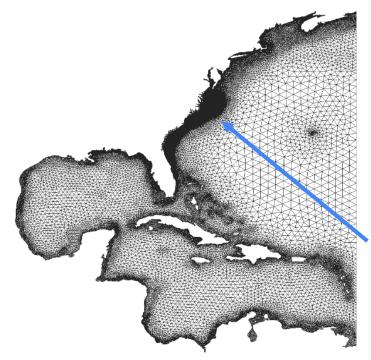
Check out real-time

flood sensor data here

Floods* outside of extreme storms

April 2022 to April 2023: **43 floods**

May 2023 to April 2024: **64 floods**

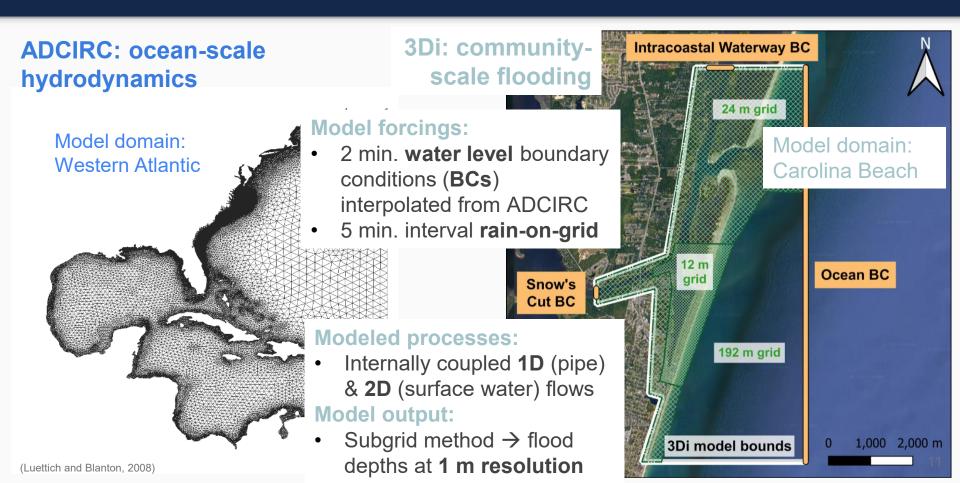

May 2024 to April 2025: **51 floods**

(Thelen et al., 2024; Hino et al., 2025)

*flood = any amount of water on the road

A coupled **hydrodynamic** and stormwater model to simulate coastal flooding

ADCIRC: ocean-scale hydrodynamics


Model forcings:

- Tidal constituents at open ocean boundary
- 3 hr, 12 km interval wind and pressure fields
- Sea-level rise from domain-wide water level increase

Model domain: Western Atlantic

(Luettich and Blanton, 2008)

A coupled hydrodynamic and **stormwater** model to simulate coastal flooding

Knowledge gaps

Model of multi-driver coastal flooding

Water Research

Available online 28 August 2024, 122339

In Press, Journal Pre-proof ① What's this?

Wind and rain compound with tides to cause frequent and unexpected coastal floods

 $\underline{ \text{Thomas Thelen} \, ^1 \overset{\triangle}{\sim} \, \boxtimes} \,, \, \underline{ \text{Katherine Anarde} \, ^1 \boxtimes} \,, \, \underline{ \text{Joel Casey Dietrich} \, ^1 \boxtimes} \,, \, \underline{ \text{Miyuki Hino} \, ^2 \, ^3 \boxtimes} \,$

Knowledge gaps

Model of multi-driver coastal flooding

Framework for testing effectiveness, acceptability of chronic flooding adaptations

Canal Drive flooding woes due to handful of properties. A proposed solution? Expensive bulkheads

Private problem, public nuisance?
Carolina Beach committee pinpoints 9
properties causing flooding on Canal

Envisioning Flood Resilience in Carolina Beach community workshop series

We engaged ~15 residents to identify flood resilience strategies preferred by the community, and test how effective these strategies might be in mitigating flooding now and in the future

Identify strategies \rightarrow model at present-day sea levels \rightarrow model at future sea levels

Workshop #1: June 2024

- What strategies?
- Where?

Long list of potential strategies

Workshop #2: November 2024

- Effectiveness at present-day sea levels?
- Effectiveness against different drivers (tides/wind vs. rain)?

Short list of potential strategies

Workshop #3: February 2025

- Effectiveness at future sea levels?
- Feasibility?

Preferred strategies and associated next steps

Workshop #4: May 2025

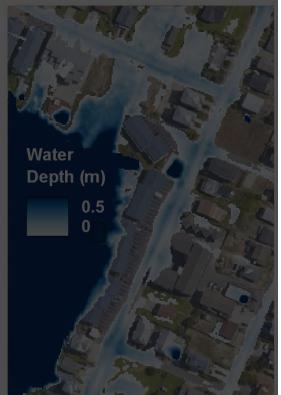
- Reflection, next steps
- Report back to broader community

Flood resilience strategies selected by participants for modeling

Modeled strategies

- Minimum bulkhead elevation
- Pumps
- Min. bulkhead elevation + pumps
- Movable flood barrier

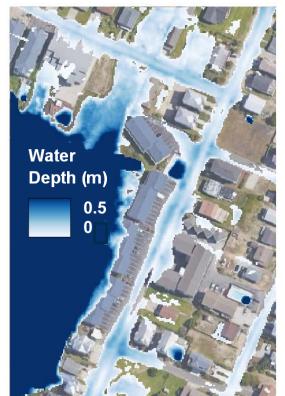
Drainage canal


Bulkhead

Pump

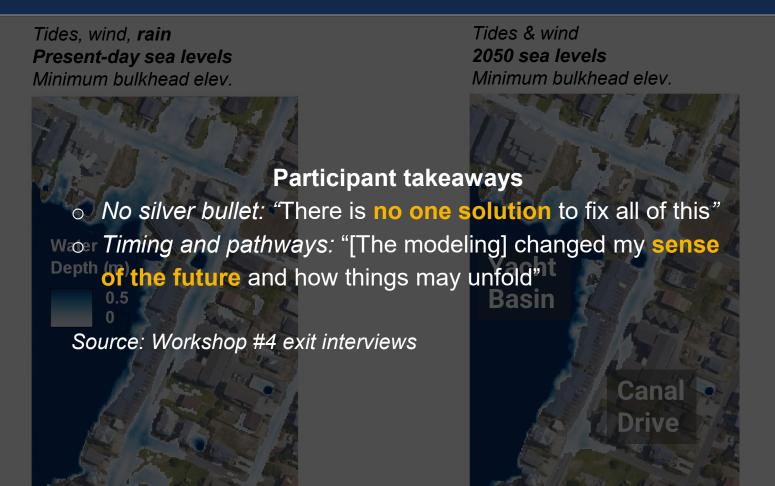
1) With bulkheads, present-day flooding from rain at high tide > 2050 flooding without rain

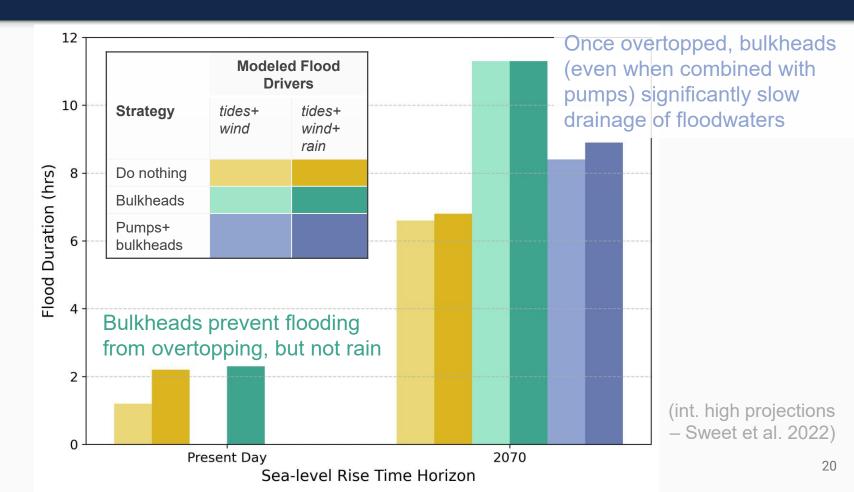
Tides, wind, rain
Present-day sea levels
Minimum bulkhead elev.

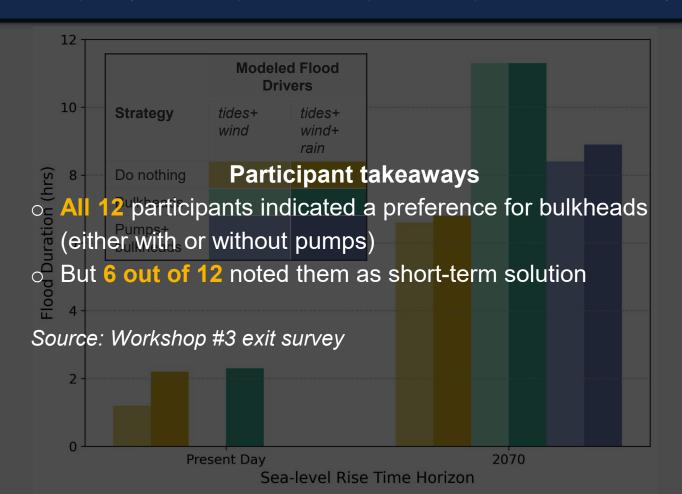

Tides & wind
2050 sea levels
Minimum bulkhead elev.

(int. high projections – Sweet et al. 2022)

1) With bulkheads, present-day flooding from rain at high tide > 2050 flooding without rain


Tides, wind, rain
Present-day sea levels
Minimum bulkhead elev.


January 22, 2023 hindcast flood Tides & wind
2050 sea levels (int. high projections
Minimum bulkhead elev. – Sweet et al. 2022)


Modeling at future sea levels informed time horizons to target for adaptation

2) Higher bulkheads block return flow, increasing flood duration \rightarrow maladaptive at future sea levels

Participants weighed present-day functionality/feasibility vs. future maladaptive outcomes

Tailored models, validated with local data, engage residents in adaptation conversations

Physical science takeaways: effectiveness of SLR adaptation strategies

- 1) Today: raising shoreline elevations (e.g., bulkheads or seawalls) keeps out marine flood drivers but does not protect against compound events
- 2) Future sea levels: raised shorelines become maladaptive by trapping floodwaters (marine and compound) & increasing flood duration

Social science takeaways: perceptions of SLR adaptation strategies

- Modeling a range of future sea-levels helped participants select time horizons
 that they most value for adaptation decisions
- 2) The perceived ease of implementation to address immediate flooding issues **outweighed** potential maladaptive outcomes at future sea levels

Project Partners and Funders

Community Partners – Town of Carolina Beach: Jeremy Hardison Daniel Keating

Sensor Gurus: Anthony Whipple Liz Farquhar

Graduate Students: Ryan McCune Brooke Gaenzle James Collins Roya Sahraei **Project Pls:**Katherine Anarde
Miyuki Hino

Research Assistants: Isabel Kwass-Mason

Undergraduate Students:
Perri Woodard
Levi Lavengood
Lexi Jacobson
Nadia Karzouz
Lucas Snoddy
Harper McCraw

Thanks for your attention! Questions?

ththelen@ncsu.edu

linkedin.com/in/ththelen

Graduating January 2026

Next steps: post-doc or researcher position

CV linked here →
Let's talk!

Two papers in prep:

- How coastal residents perceive hazards from chronic flooding
- Takeaways from the workshops and adaptation modeling

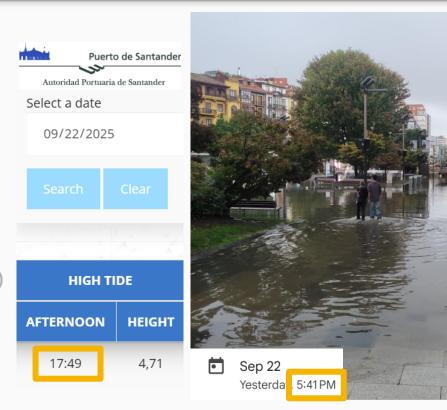
Extra slides

Drivers of chronic flooding

Ocean-scale flooding drivers:

- Tides (Hague et al., 2023)
- Wind setup (Coz et al., 2021)

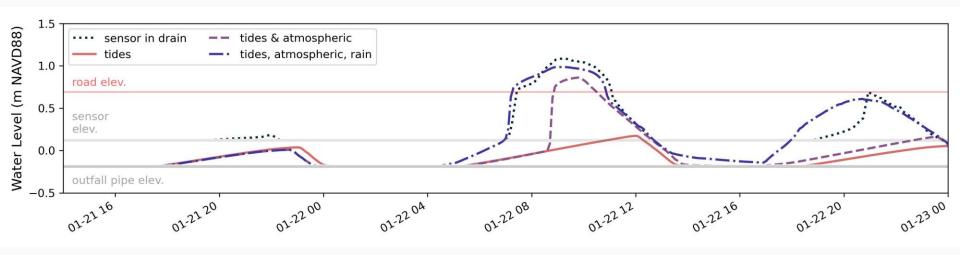
Localized flooding drivers:


- Rainfall (Gold et al., 2023)
- Infrastructure (Obara et al., 2025)

Sea-level rise (Sweet et al., 2022)

Spatial scale: several city blocks (Mydlarz et al., 2024)

Temporal scale: minutes to hours


(O'Donnell et al., 2024)

Coastal flooding driven by **rainfall at high tide** in Plaza del Ayuntamiento, Santander (Source: my walk home from the Workshop on Monday)

Model reproduces flooding only after addition of atmospheric effects and rain

Drivers of chronic flooding

Ocean-scale flooding drivers:

- Tides (Hague et al., 2023)
- Wind setup (Coz et al., 2021)

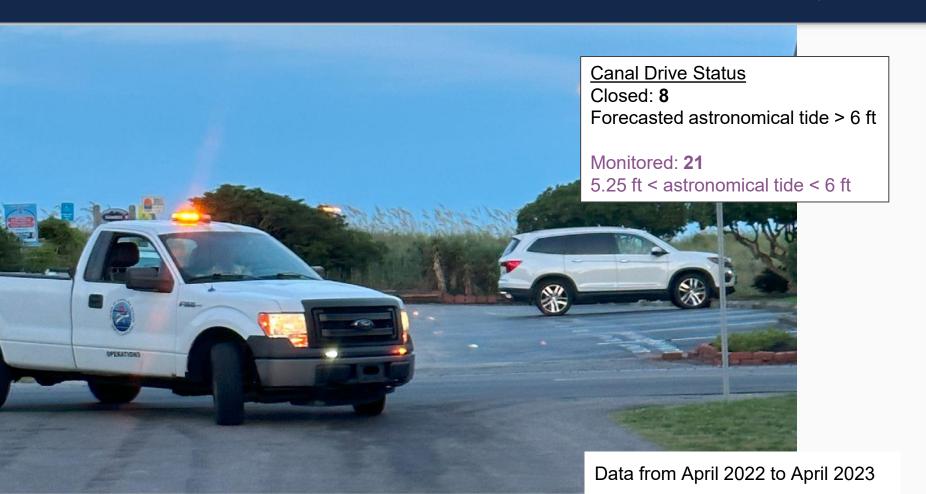
Localized flooding drivers:

- Rainfall (Gold et al., 2023)
- Infrastructure (Obara et al., 2025)

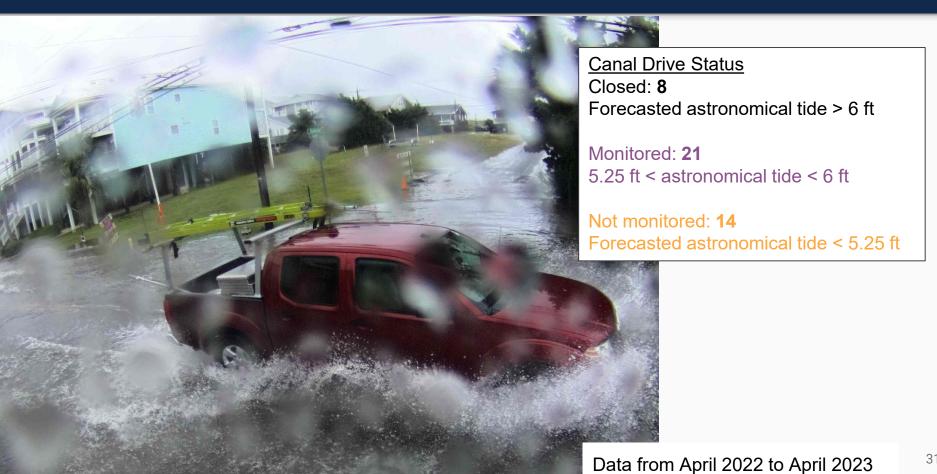
Sea-level rise (Sweet et al., 2022)

Spatial scale: several city blocks (Mydlarz et al., 2024)

Temporal scale: minutes to hours (O'Donnell et al., 2024)



Coastal flooding driven by **rainfall at high tide** in Carolina Beach, North Carolina (Source: Sunny Day Flooding Project camera)

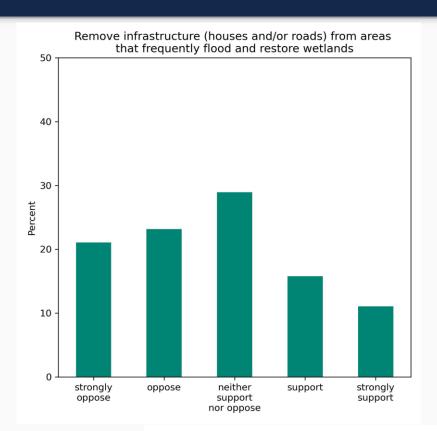

20% of floods occurred at forecasted tides above the threshold for closing Canal Dr.

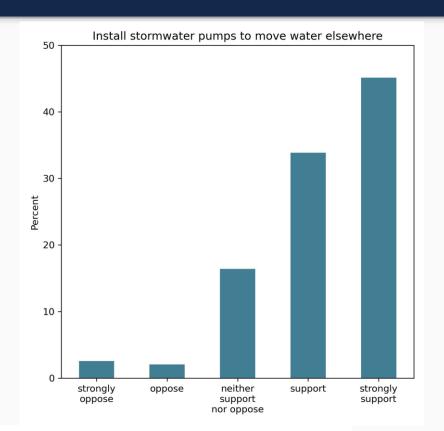
An additional 50% of floods occurred at tides above the threshold for monitoring Canal Dr.

30% of floods were "unexpected" based on the tidal threshold

Jan. 22, 2023: if we modeled tides only, water would not have reached Canal Dr.

Jan. 22, 2023: when we add wind to the model, flooding reaches Canal Dr.




A survey to understand chronic flooding impacts and preferred adaptations

Flooding survey mailer

Survey results show a preference for adapting in place

But what adaptation strategies will be effective in mitigating flooding, and over what timescales?

Workshops content e.g.: What might sea-level rise look like on Canal Drive? 2022 to 2050-2070

We expect this much SLR by:	2030	2040	2050	2070	2100
30 cm			Worst case	Best case	

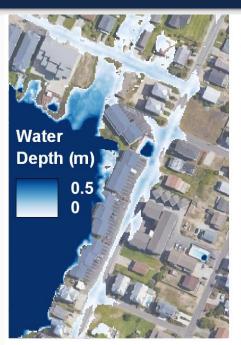
Baseline: 2022 flood

+ 30 cm =

2050 to 2070 flood

Workshops content e.g.: What might sea-level rise look like on Canal Drive? 2022 to 2070-2100

We expect this much SLR by:	2030	2040	2050	2070	2100
61 cm				Worst case	Best case



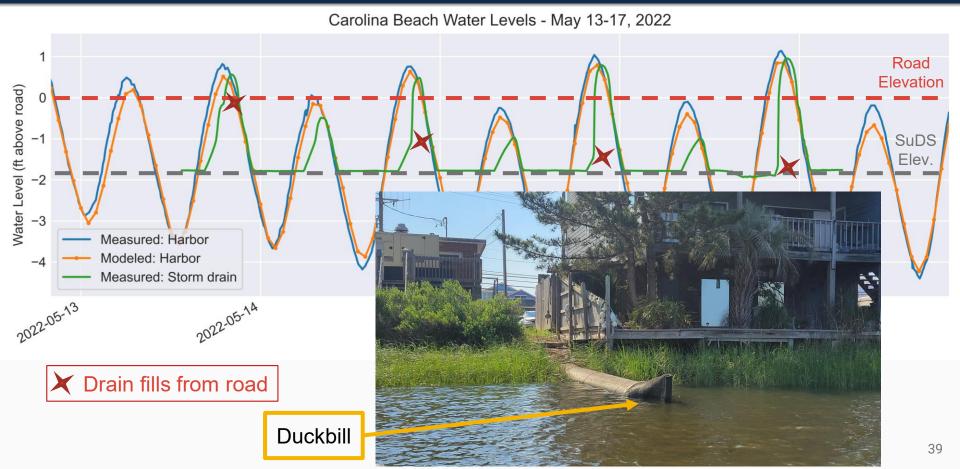
Baseline: 2022 flood + 61 cr

+ 61 cm = 2070 to 2100 flood

Even at present day sea levels, raised shorelines do not mitigate compound high bayside water level and rain-driven flooding

Tides & atmospheric Present-day sea levels

Tides & atmospheric Present-day sea levels Higher bulkheads


Tides, atmospheric, rain Present-day sea levels Higher bulkheads

Tides & atmospheric 2050 sea levels Higher bulkheads

Duckbill valves distort the tidal signal in the stormwater network.

Wave setup is not a significant driver of back-bay flooding in Carolina Beach

We find that water levels in the Yacht Basin differ by less than 0.01 m between SWAN+ADCIRC and ADCIRC simulations run on the same mesh with the same wind forcing. Therefore, we conclude that wave setup is not a substantial driver of chronic flooding in Carolina Beach.