4th International Workshop on Waves, Storm Surges and Coastal Hazards

Future Coastal Waves along Southeast Australia Using Regional Climate Models

Dr. Aditya Deshmukh, A/Prof Mitchell Harley, Prof. Jason Evans, and Prof. Ian Turner

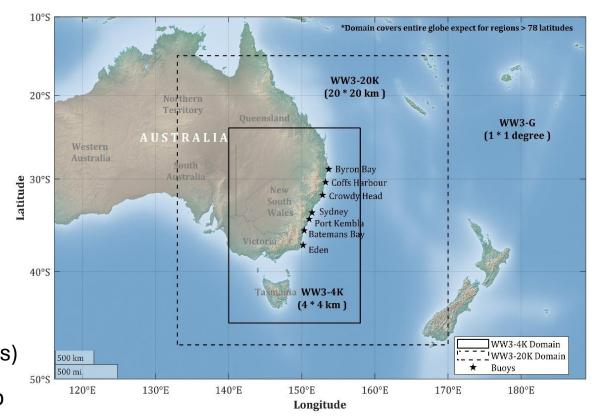
Water
Research
Laboratory
School of Civil and
Environmental Engineering

Introduction

- Coastlines are influenced by waves and tides/water level
- SE Australia's coastline is wave dominated
- Coastal waves projections are crucial to safeguard coasts
- Anthropogenic climate change effects complicate projections

Introduction

- GCM/RCMs are the main tool to understand past, present and future climate
- Wave models forced with GCM/RCM winds can project waves
- GCM based wave projections not suitable for regional and local level studies
- New South Wales (NSW)/Australian Capital Territory (ACT) Regional Climate Modelling (NARCliM) is a regional climate downscaling project
- NARCliM RCM provides an opportunity to derive regional scale wave projections



Domain extents of NARCliM1.5 (dashed line) and NARCliM2.0 (solid line) wind model

Objective and Overview of Methodology

- Derived coastal wave projections (at seven buoy locations) using six-member NARCliM1.5 RCM (completed) and 10-member NARCliM2.0 RCM (ongoing)
- Improved representation through suitable bias correction technique
- Examined three aspects of the wave climate:
 - (1) *modal* conditions (50th percentile)
 - (2) *high* wave conditions (>95th percentile Hs)
 - (3) **severe** wave conditions (>99th percentile of Hs)
- The analysis is focused on bulk wave parameters Hs, Tp and Dp using time slices and continuous evolution to investigate interannual variability

Domain extent used for NARCliM2.0 wave model simulations.

Coastal Wave Simulations

NARCIIM 1.5

Driving GCMs: 3 - CMIP5 based

WRF Downscaling Configuration: R1, R2

Spatiotemporal Resolution: 10 km, 1 hr

Future Pathways: RCP8.5, RCP4.5

Wave Simulation Period: 1981-2005

(historical), 2006-2100 (future)

NARCIIM 2.0

Driving GCMs: 5 - CMIP6 based

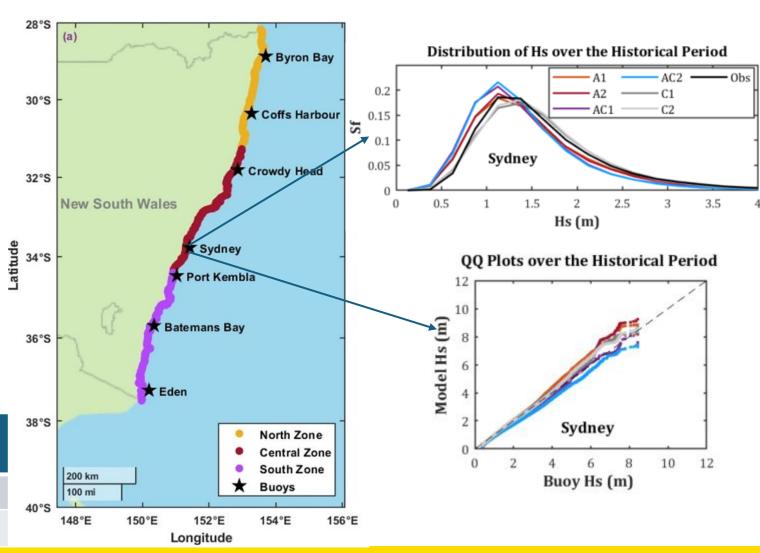
WRF Downscaling Configuration: R3, R5

Spatiotemporal Resolution: 4 km, 1 hr

Future Pathways: SSP1-2.6, SSP3-7.0

Wave Simulation Period: 1990-2014

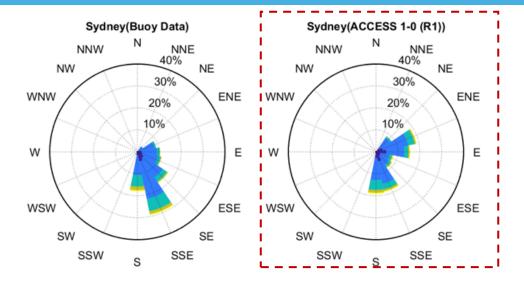
(historical), 2015-2100 (future)

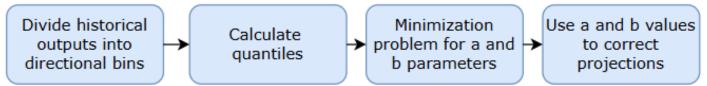

Validation

- Bulk wave parameters were evaluated against observations from seven buoys
- Entire probability distribution is compared to understand performance against different regimes (modal and extremes)

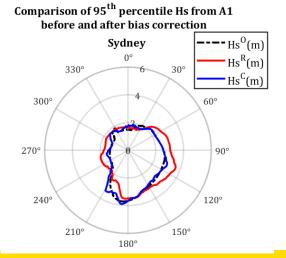
$$PDF - Score = \int min(PDF_{RCM}, PDF_{Buoy})$$

Evaluation of six-member NARCliM1.5 RCMwave climate with observation


	Hs	Тр
PDF-Score: (range 0 to 1)	0.74 - 0.98	0.68 - 0.81

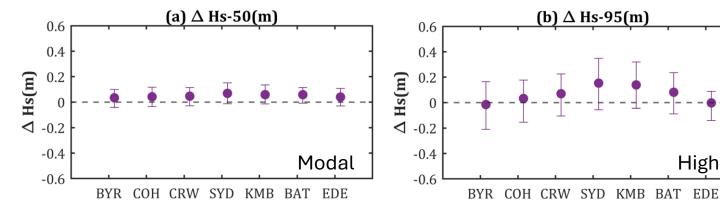


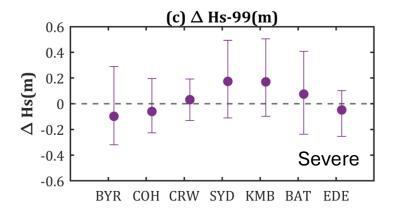
Implementation of Bias Correction Technique


- Model output shows biases with underestimation of southerly waves and overestimation of easterly waves
- Implemented Directionally Adjusted empirical Quantile Mapping (DAGQM) bias correction

$$H_s^C = a^R (D_p) (H_s^R)^{b^R (D_p)} \tag{1}$$

 Bias-correction increases PDF-Score of both Hs and Tp by 25%

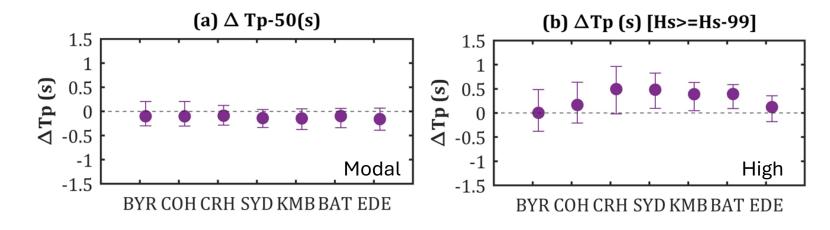


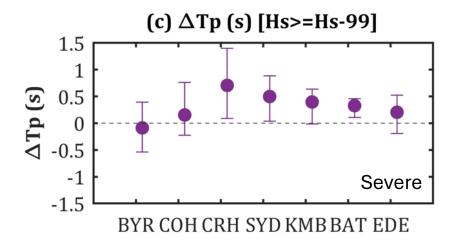

Future Changes (NARCliM1.5) in Significant Wave Height (2075-2099) vs (1981-2005)

- Future changes depend on driving GCM
- The central region (Sydney and Port Kembla) shows relatively consistent increases in Hs for high wave conditions
- Similar trends but with reduced magnitudes for RCP4.5

Future change in Hs for RCP8.5 (2075-2099) vs (1981-2005)

Wave condition	Future Changes in Hs (RCP8.5)
Modal waves (Hs-50)	~-0.05 to +0.15 m
High waves (>Hs-95)	-0.2 to ~+0.4 m
Severe waves (>Hs-99)	-0.3 to +0.55 m

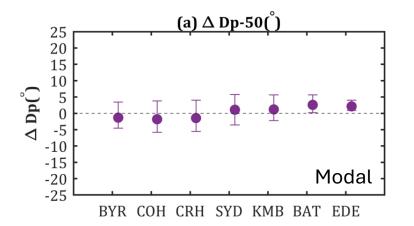


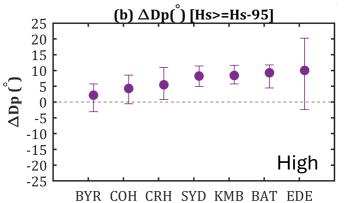

High

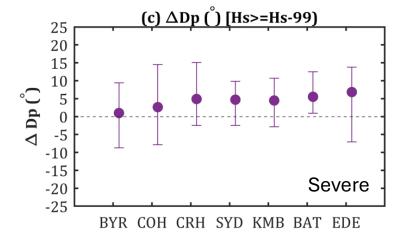
Future Changes in Peak Wave Period (2075-2099) vs (1981-2005)

- Future changes depend on driving GCM
- The central region show consistent increases in Tp of ~0.5 seconds
- Similar trends but with reduced magnitudes for RCP4.5

Wave condition	Future Changes in Tp (RCP8.5)
Modal waves (Hs-50)	-0.3 to 0.25 s
High waves (>Hs-95)	~-0.4 to +1 s
Severe waves (>Hs-99)	-0.5 to ~+1.5 s



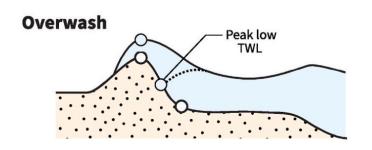



Future Changes in Peak Wave Direction (2075-2099) vs (1981-2005)

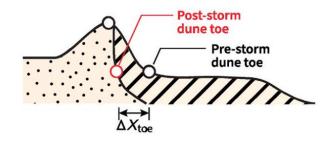
- Consensus on more southerly waves during high and severe conditions with minimal changes in modal waves
- Southerly direction shift more prominent (~ 10 degrees) towards southern NSW
- Similar trends but with reduced magnitudes for RCP4.5

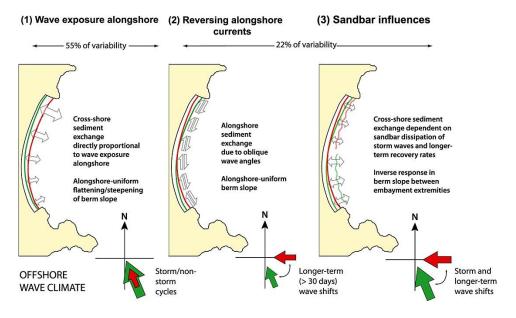
Wave condition	Future Changes in Dp (RCP8.5)
Modal waves (Hs-50)	-6° to 6°
High waves (>Hs-95)	~-3° to 10° (except Eden)
Severe waves (>Hs-99)	~-9° to 15°

Summary of NARCliM1.5 RCM Coastal Wave Projections


- Modal waves show minimal changes in bulk parameters Hs, Tp and Dp
- High waves (95th percentile) projected to slightly increase, particularly around Sydney
- High waves also projected to be more southerly, particularly towards southern NSW
- Results sensitive to driving GCMs
- RCP4.5 show reduced changes
- Further investigation with latest NARCliM2.0 based ensemble is required to improve confidence

RCP8.5				
Wave conditions	Modal	High	Severe	
Hs	~-0.5 to +0.15 m	-0.2 to ~+0.4 m	-0.3 to +0.55 m	
Тр	-0.3 to 0.25 s	~0.4 to +1 s	-0.5 to ~+1.5 s	
Dp	-6° to 6°	~-3° to 10° (except Eden)	~-9° to 15°	




Implications for coastal impacts

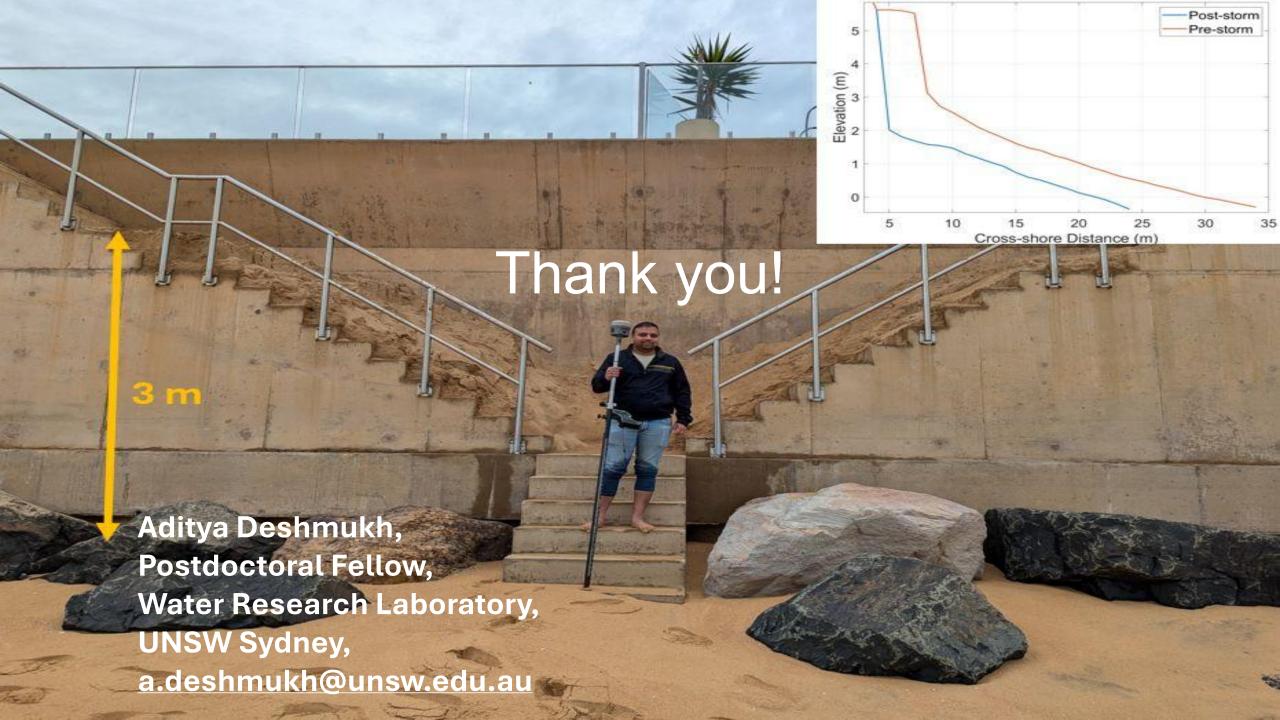
- Hs and Tp increases can result in increased wave runup and overtopping of coastal structures during high wave conditions
- More southerly waves can lead to clockwise realignments of embayed beaches and potential erosion at southern extremities
- More southerly storms likely to reduce short-term erosion risk due to headland wave attenuation on this coastline
- Local studies essential for more detailed insights

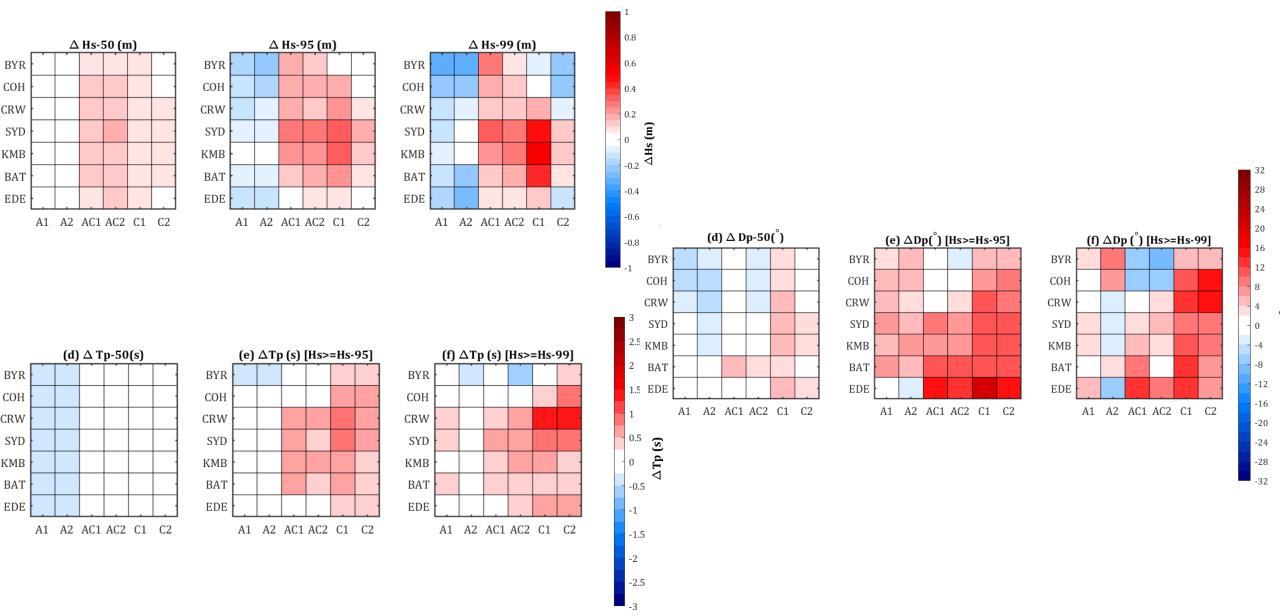
Dune face erosion

NARCliM2.0 RCM Coastal Wave Projections

Version: NARCliM2.0

Driving GCMs: 5 CMIP6-based


WRF Downscaling configuration: R3 and R5


• Future Pathway: SSP 1-2.6, SSP3-7.0

• Spatiotemporal Resolution: 4 km, 1 hr

Simulation Period: 1990-2014 (historical), 2015-2100 (Future)

Wave Simulation	NARCliM Version	СМІР	Driving GCM	RCM	Historical Period	Future Periods	CMIP Future Pathway	Spatial, Temporal Resolution
Name								
A1			ACCESS 1-0	R1	1981-2005	2006-2100	RCP8.5 RCP4.5	10 km, 1 hour
A2			ACCESS 1-0	R2				
AC1	NARCliM1.5 CMII	OMUDE	ACCESS 1-3	R1				
AC2		LiM1.5 CMIP5 ACCESS 1-3 R2 1981-2005 2006- CanESM2 R1 CanESM2 R2	ACCESS 1-3	R2				
C1			CanESM2	R1				
C2								
AE1		ACCESS-ES EC-Earth3-V EC-Earth3-V NorESM2-M	ACCESS-ESM1-5	R3	1990-2014	2015-2100		
AE2			ACCESS-ESM1-5	R5				
EC1			EC-Earth3-Veg	R3				
EC2	NARCliM2.0 CMIP6		EC-Earth3-Veg	R5				
NM1			NorESM2-MM	R3			SSP1-2.6	4 km, 1 hour
NM2		CMIP6	NorESM2-MM	R5			SSP3-7.0	
MP1			MPI-ESM1-2-HR	R3				
MP2		MPI-ESM1-2-HR	R5					
UK1			UK-ESM1-0-LL	R3				
UK2			UK-ESM1-0-LL	R5				

