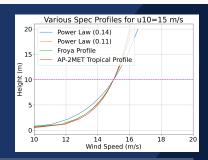
Normalization of Winds for Tropical Cyclone Comparisons Between Model and Measurements

Alex Crosby

2025-09-22


Oceanweather Inc., Stamford CT, US 06901

1. Introduction

1.1 Wind fields

10-meter neutral (mean) wind speeds

- Response model source term formulations
- Assumptions in offshore design standards

Marine winds

Over water we expect the winds to be a marine-equivalent exposure; roughness length $z_0(U)$

$$U_z = \frac{U_*}{\kappa} \ln \frac{z}{z_0(U_*)}$$

$$z_0 = \frac{a_c}{g} \left(\frac{\kappa U_z}{\ln \frac{z}{z_o}} \right)^{0.5}$$

1.2 Conventions in available data

Model-Obs. comparison requires consistent WS convention - 10m reference height

Neutral stability, "raw" exposure

■ ERA5

Dynamic stability, "raw" exposure

- CFS/CFSv2
- WRF

Neutral stability, marine exposure

- OWITropPBL & USACE MORPHOS tropical cyclone models
- Satellite measurements

1.3 In-situ measurements

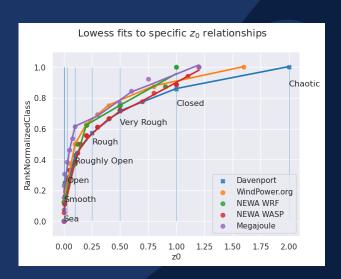
Offshore stations

- Height varies
- Marine exposure

Nearshore and coastal land stations

- Height varies; mixed or land exposure
 - Upwind surface roughness lengths (z_0) from land-use/cover (LULC)
- influenced by orographic effects from local topography

1.4 Legacy Solutions


- Manual estimation from imagery using Davenport classes
- ullet Available model domain coverage including directional z_0
 - ADCIRC
 - WRF
- Site-specific research/papers

2. Modern Global Approach

2.1 Semantic relationships

Many LULC systems

Few accepted $\label{eq:control} \text{mappings to } z_0$

2.2 Classification mapping to z_0

Dataset	Temporal Coverage	Resolution	Classification System
ESA WorldCover	2020-2021	10-meter	ESA-WorldCover subset of UN-LCCS
Impact Observatory (IO)	2017-2022	10-meter	ESRI simplification of IO's system

Class	Description	z0 (m)	ESA-WorldCover	ESRI
	Urban fabric	1.2		
2				
	Green urban areas; transitional woodlands/shrub; burnt areas			
4	Industrial, commercial and transport units			
	Heterogeneous agricultural areas			
6	Permanent crops			
	Industrial commercial and transport units	0.075		
8	Arable land and marine wetlands			
	Pastures		30/100	
10	Mine, dump and construction sites			
	Ice and snow	0.001		
12	Wetlands			
	Open spaces with little or no vegetation	0.0003		
14	Water bodies			0/1/3/6/10

Wetlands:

Coastal marshland

(z = 0.05)

Mangroves (z = 0.75)

Megajoule Paper: Silva, Julieta & Ribeiro, Carla & Guedes, Ricardo & Rua, Megajoule-Consultants & Ulrich, Frederico. (2007). Roughness length classification of Corine Land Cover classes. Proceedings of EWEC 2007.

2.3 Directional roughness dataset development

Effective roughness length by: point & upwind sector

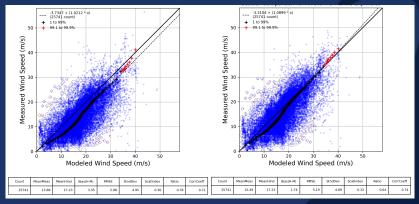
• Weighted mean upwind z_0 : Rectangular ray from point (Width \times Distance)

Parameter sweep testing

- Upwind ray distance (100-5000 m)
- Upwind ray width (30-500 m)
- # of directional sectors (8-16)

2.4 Evaluation of exposure adjustment

Using 5-year mean directional roughness from (ESRI/IO dataset)



Top 14 land-falling CONUS trop. cycl. (1985-2019)

2.5 Result

Modeled tropical wind speed (WS) comparisons to 10m neutral measurements from land stations

2.6 Summary

- Standardized approach for normalizing coastal & land-based
 WS obs. for comparison to tropical storm modeling
- $z_0(\theta)$ best case: rect. upwind rays with a width of 300m & length of 1km
- Better comparison than unadjusted exposure & our original adjustments for the test storm/station population
- No explicit adjustment of obs. averaging periods, orographic impacts, or temporal trends/variation