Modeling Community Resilience Under Climate Change: Hazard Model Development

Kendra M. Dresback, Christine M. Szpilka, Xianwu Xue, Humberto Vergara, Naiyu Wang, Randall L. Kolar, Jia Xu, and Kevin M. Geoghegan

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards

University of Notre Dame October 1-6, 2023

- Geoghegan, K., Fitzpatrick, P., Kolar, R., Dresback, K. "Evaluation of a Synthetic Rainfall Model, P-CLIPER, for Use in Coastal Flood Modeling" *Natural Hazards*, DOI: 10.1007/s11069-018-3220-4.
- Dresback, K.M., Szpilka, C.M., et al., Steps Towards Modeling Community Resilience Under Climate Change: Hazard Model Development, *Journal of Marine Science and Engineering*, DOI: 10.3390/jsme707022.

NIST COE Project Objectives

- Modeling tool for use with risk-based coastal community resilience planning under a changing climate.
- Hazard Model Features
 - Total water level (tides + surge + waves + inland runoff)
 - Future climate + Relative SLR
 - Need time series probability of occurrence for resilience assessment
 - Community and regional scales (NC case study)
 - Modular
 - Different model components
 - Different sources of input data

Background on Probabilistic Rainfall Model, R-CLIPER

- Rain CLImatology and PERsistence model (R-CLIPER, Lonfat et al., 2004)
 - Created for idealized studies and tropical cyclone (TC) QPF benchmark
 - Data from Tropical Rainfall Measuring Mission (TRMM)
 - 260 TCs, 2121 instantaneous observations
 - Flexible approach equations with probability distribution functions (PDFs)

Radial distribution of rainfall PDF; gray scale indicates frequency of occurrence

Background on Probabilistic Rainfall Model, P-CLIPER

- Extension of Lonfat et al.:
 - Parametric equations developed for three intensities: TS, CAT12, CAT345
 - Describes TC rain rate, *R*, as function of:
 - Radial distance from storm center, *r*
 - Frequency, f (percent from class average)
- Hourly rainfall obtained along NHC best track
- Integration along path for storm-total rainfall accumulation
- Calibrate against historical storms

Functional form of equations (CAT classes):

 $R(r,f) = A \ e^{Bf} \ge r/30 \ ; \ r <= 30 \ \text{km}$ $R(r,f) = p(r) \ge e^{Bf} \ ; \ r > 30 \ \text{km}$

Performance - Hurricane Isabel (2003)

Hydrological Response for Rainfall

- North Carolina area used as application significant data available for riverine areas
- Calibration using Observed NWS Stage IV radar rainfall for past hurricanes
- Ensemble of hydrographs using P-CLIPER output with variable *f*
- Nash-Sutcliffe Coefficient of Efficiency (NSCE) used as quantitative metric

Performance - Hurricane Isabel (2003)

allh

GALLOGLY COLLEGE OF ENGINEERING CIVIL ENGINEERING & ENVIRONMENTAL SCIENCE The UNIVERSITY of OKLAHOMA

Hydrologic Calibration – MRMS vs. P-CLIPER Hydrographs

alla

Latth

Future Climate (2080 – 2010)

- RCP 8.5 Scenario
- Tracks provided by Emanuel
 - 5000 in data base made landfall near the study area
 - Reduction by binning into 243 Latin
 hypercubes such that each bin had 20 or 21 tracks
 - Five-dimensional binning: (at landfall) longitude, angle, pressure deficit, radius to maximum wind, and forward speed
 - Randomly select one storm from each hypercube (checked for bias)

GALLOGLY COLLEGE OF ENGINEERING CIVIL ENGINEERING & ENVIRONMENTAL SCIENCE The UNIVERSITY of OKLAHOMA

Relative Sea Level Rise

- N.C. Coastal Resources Commission Science Panel publishes R-SLR as a function of year, location
- Assume sea level rise in a given year follows a beta distribution
- Select 243 random samples from this space
- Group into 20 bins (to limit the computational cost); range 0.37 m to 0.99 m

Probabilistic Output

- Created 243-member ensemble
- For each track, randomly assign:
 - Rainfall frequency factor from range found during calibration
 - Relative sea level rise from beta distribution sampling (assigned to nearest bin)
- Products for infrastructure group
 - Probability that a location is flooded
 - Spatial correlation
 - Max inundation

We appreciate the support of:

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

enenenenenen

alla

1 alle

Latth

Questions?

