

WAVE IMPACTS ON NEARSHORE PROCESSES IN COUPLED WAVE-FLOW MODELS

Wave-Flow Coupling

Cagil Kirezci, Mike Herzfeld, Vanessa Hernaman, Farhan Rizwi and Ron Hoeke

05/10/2023

SRD INTERNATIONAL WORKSHOP ON Waves, Storm Surges, and Coastal Hazards

"Surface waves affect the upper-ocean circulation, air—sea fluxes, and cross-shelf exchange due to both conservative and non-conservative effects."

WEC terms can impact;

- Addition of waves can improve elevation
- Influence hydro-sedimentary dynamics in the coastal zone
- Contribute to storm surge, extreme water levels
- Wave impacts on currents & currents influence on waves

COMPAS- SWAN Coupling

Evaluate and develop next-generation numerical modelling techniques and tools for incorporation, with the aim of improved prediction of littoral dynamics at a greater range of spatial scales

The models: COMPAS & SWAN

- COMPAS (Coastal Ocean Marine Prediction Across Scales) 3D finite volume hydrodynamic model in CSIRO's Environmental Modelling System (EMS). (Herzfeld,2006; Herzfeld et al.,2020)
- Used at scales ranging from estuaries to regional ocean domains
- Uses the adapted the unstructured C-grid discretisation employed in the MPAS (Model for Prediction Across Scales) global ocean model for use in Coastal Modelling.
- Operates on Arakawa C-grid, whereby normal velocity components are staggered at the edges of Voronoi cells, with fluid height and tracer variables located at cell centres (Herzfeld et.al., 2020)
- Advantages of hexagonal mesh:
 - -spurious modes associated with triangular C-grid meshes are absent in these hexagonal cases.
 - works well with finite-volume models

SWAN (Simulating Waves Nearshore) (Booij et al., 1999; Zijlema et al., 2010) 3rd gen phase averaged wave model

Figure: Herzfeld et.al., 2020

 JIGSAW (Engwirda, 2017) designed for TRiSK FV scheme Delaunay triangulation -Centroidal Voronoi Tessellation

Figure: Farhan Rizwi

Wortex- Force Formalization and Why?

- Vortex-force representation decomposes the main wave-averaged effects into two physically understandable concepts of vortex force and a Bernoulli head
 - explicit inclusion of different type of wave-current interaction
 - incorporate impacts of depth-limited wave dissipation terms (e.g. wave breaking), higher order nonlinear wave impacts.
 - Vertical components of the 3d Radiation stress tensors wave radiation stress change very fast with depth
- Uchiyama et al., (2010) and Kumar et al., (2012) extended McWilliams et al. (2004) to consider non-conservative conditions by adding breaking waves, roller waves, bottom and surface streaming and wave-enhanced mixing through empirical formulas. (ROMS, COAWST, SCHISM)

COMPAS-SWAN Coupling Technical

- No model coupler
- Compile SWAN as a library object to which COMPAS can link using C interoperability protocols
- During initialisation within SWAN, pointers to variables within this data structure are set up.
- COMPAS initialises and manages memory for wave variables
- SWAN updates information for those variables by writing directly to the memory addressed rather than transferring the actual data

Variable	Description	Method
COMPAS STE	Stokes Drift	Romero et al. (2021)
COMPAS K	Effective Wavenumber	Romero et al. (2021)
COMPAS KB	Bernoulli Head (Wave-Induced Pressure)	WW3, Bennis et al. (2011)
COMPAS FWCAP	Whitecapping	SWAN + Uchiyama et al. (2010)
COMPAS FBRE	Depth-induced wave breaking	SWAN + Uchiyama et al. (2010)
COMPAS FBOT	Bottom Friction Dissipation	SWAN + Uchiyama et al. (2010)
COMPAS FSUR	Surface Streaming	SWAN + Kumar et al. (2012)
COMPAS FROL	Surface Roller Dissipation	Svendsen(1984) + Kumar et al. (2012)
COMPAS WFD	Wave Form Drag	WW3 + Kumar et al. (2012)
COMPAS WOVS	Wave Ocean Viscous Stress	WW3 + Kumar et al. (2012)

- Difference between Eulerian and Lagrangian velocities and may significantly change the transport properties of the system at equilibrium.
- has a crucial importance for the wave-current interactions and upper ocean mixing

Composite Iterative Approach based on Romero et al. 2021

Monochromatic (Shallow and at Depth) $u_{s}(z) = \frac{A^{2}}{2}\sigma k \frac{\cosh 2k(z+d)}{\sinh^{2}kD}$ +

Spectral (DW and Intermediate depths)

$$u_{s}(z=0) = \iint \sigma \cosh 2kd \frac{(k\cos(\theta), k\sin(\theta))}{\sinh^{2}kd} S(\sigma, \theta) d\sigma d\theta$$

$$u_{se} \approx u_0 \frac{\cosh 2k_{se}(z+d)}{\sinh 2k_{se}D}, \qquad k_{se} = \frac{u_s(z=0)}{2U_s}, \qquad H(z) = \tanh\left(\frac{|z|k_{se}}{2}\right)^{1/2}$$

"The framework improves over existing methods not limited by water depth or monochromatic assumptions."

 $u_{sf}(z) \approx H(z)u_{sp} + |(1 - H(z))u_{se}|$ Switch Function

Testbed region: Mandurah, Western Australia

- Geographical Features

- The nearshore reefs
- Tidal channels
- Estuary
- Leeuwin Current

-Observation Points *in-situ* coastal wave and circulation observations are available in this region

Mandurah Testbed : June 2019

Resolution

- 50 m resolution at the coast
- 4000 m at the open boundary
- ~40000 indices
- SWAN t=15 min , COMPAS t=0.5 sec

Forcing Fields

– Winds

Conformal Cubic Atmospheric Model (C-CAM) , McGregor (2005)

Wave Forcing

Regional SWAN hindcast (500m) downscaled from CAWCR (WW3) Hindcast (4 arc sec), Durrant, T. (2014); Trenham, C. E (2014).

Water Level

BRAN2020 OFAM3 (MOM5) (0.1 degree) Chamberlain et al. (2021)

– Tides

TPXO Tides

Egbert, G.D. and Svetlana Y.E (2002)

• Surface Elevation (η)

Mandurah, WA Test Bed - June 2019

Bandurah, WA Test Bed - June 2019

Mandurah, WA Test Bed - June 2019

Mandurah

Rottnest Island 6 Hsiq 5 Hs (m) 3 2 1 2019-06-29-01-01 2019-06-05 2019-06-09 2019-06-13 2019-06-25 2019-06-01 2019-06-17 2019-06-21 Date UTC — Тр 20 Tp (m) 15 10 201306225 2012.06.13 2019-06-05 2019.06.01 1019-06-09 2019:06-17 2019-06-21 2019.06.29

Date UTC

14

Mandurah, WA Test Bed - June 2019

Cottlesloe

• Stoke Drift and Bernoulli Head

Ε

Non-conservative WEC Terms

Non-conservative WEC Terms

Ε

 COMPAS-SWAN coupled model available <u>https://github.com/csiro-coasts/EMS</u>

Coastal Ocean Marine Prediction Across Scales

- Importance of incorporating WEC terms into hydrodynamic modelling, particularly for surface elevation
- Vortex-Force Formalization
- Romero et al.,2021 Stokes Drift not limited by water depth or monochromatic assumption.
- Wave Roller Model of Svendsen (1984) → applied
- Using Roller Energy Density (Reniers, 2004) \rightarrow application in progress

Thank you

Cagil Kirezci Cagil.Kirezci@csiro.au

Australia's National Science Agency

- Wave rollers act as storage of dissipated wave energy, which is gradually transferred to the mean flow causing a lag in the transfer of momentum
- Depth Induced Wave Breaking
- Wave Roller Contribution

$$\mathbf{B}^{b} = \frac{(1 - \alpha^{r})\epsilon^{b}}{\rho_{0}\sigma} \mathbf{k} \cdot f^{b}(z)$$
$$\mathbf{B}^{r} = \frac{\epsilon^{r}}{\rho_{0}\sigma} \mathbf{k} \cdot f^{b}(z) \qquad \epsilon^{r} = \frac{\mathbf{g} \cdot \sin\beta \cdot \mathbf{E}^{r}}{c}$$

- Wave Roller Model of Svendsen (1984) → applied
- Using Roller Energy Density (Reniers, 2004) \rightarrow application in progress $\frac{\partial \mathcal{A}^r}{\partial t} + \nabla \cdot (\mathcal{A}^r \mathbf{c}) = \frac{\alpha_r \varepsilon^b \varepsilon^r}{\sigma}$

- Engwirda, D., 2017. JIGSAW(GEO) 1.0: locally-orthogonal staggered unstructured grid generation for general circulation modelling on the sphere. Geosci. Model Dev 10 (6), 2117.
- Herzfeld, M., Engwirda, D., & Rizwi, F. (2020). A coastal unstructured model using Voronoi meshes and C-grid staggering. Ocean Modelling, 148, 101599.
- Herzfeld, M., 2006. An alternative coordinate system for solving finite difference ocean models. Ocean Model. 14 (3–4), 174–196.
- Kumar, N., Voulgaris, G., Warner, J. C., & Olabarrieta, M. (2012). Implementation of the vortex force formalism in the coupled ocean-atmospherewave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modelling, 47, 65-95.
- Reniers, A. J., Roelvink, J. A., & Thornton, E. B. (2004). Morphodynamic modeling of an embayed beach under wave group forcing. Journal of Geophysical Research: Oceans, 109(C1).
- Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). A multi-resolution approach to global ocean modeling. Ocean Modelling, 69, 211-232.
- Romero, L., Hypolite, D., & McWilliams, J. C. (2021). Representing wave effects on currents. Ocean Modelling, 167, 101873.
- Svendsen, I. A. (1984). Wave heights and set-up in a surf zone. Coastal engineering, 8(4), 303-329.
- Uchiyama, Yusuke, James C. McWilliams, and Alexander F. Shchepetkin. "Wave-current interaction in an oceanic circulation model with a vortexforce formalism: Application to the surf zone." Ocean Modelling 34.1-2 (2010): 16-35.
- Zijlema, M. (2010). Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57(3), 267-277.

 COMPAS-SWAN coupled model available <u>https://github.com/csiro-coasts/EMS</u>

Coastal Ocean Marine Prediction Across Scales

- Importance of incorporating WEC terms into hydrodynamic modelling, particularly for surface elevation
- Vortex-Force Formalization
- Romero et al.,2021 Stokes Drift not limited by water depth or monochromatic assumption.

Mandurah Testbed Simulations

- SCHISM on COMPAS-generated mesh (tide + winds + SHOC)
- ----- SCHISM on COMPAS-generated mesh (tide + winds + SHOC + waves)
- COMPAS (tide + winds + SHOC)
- COMPAS (tide + winds + SHOC + waves)

Wave Induced Forcing -Stress

• Air Side – Ocean Side Stress

$$\boldsymbol{\tau}_{oc} = \boldsymbol{\tau}_a - (\boldsymbol{\tau}_w - \boldsymbol{\tau}_{ds}),$$

For winds and waves in equilibrium $\tau_w \approx \tau_{ds}$, thus $\tau_{oc} \approx \tau_a$, which corresponds to the common assumption used for ocean models. The

$$\vec{\tau_{air}} = \vec{\tau_w} + \vec{\tau_v},$$

$$\vec{\tau_{oc}} = \vec{\tau_{air}} - (\vec{\tau_w} - \vec{\tau_{ds}}),$$

- Radiation Stress Theory (Longuet_higgins and Stewart (1962,1964)
- The radiation stress is the momentum transferred through the water body per unit time (the flux of momentum)by wave orbital motion.
- In this approach the radiation stress representation is a two-dimensional (2D) tensor, and as such it is only suitable for depth-averaged numerical models.
- Nguyen et al. (2021) recently obtained 3D depth dependent radiation stress tensor using the Generalized Lagrangian Mean (GLM) Method

$$F_x = -\frac{\partial S_{xx}}{\partial x} - \frac{\partial S_{xy}}{\partial y}, \quad F_y = -\frac{\partial S_{yx}}{\partial x} - \frac{\partial S_{yy}}{\partial y}$$

$$S_{xx} = \rho g \iint [ncos^2\theta + n - 0.5]S(\sigma, \theta)d\sigma d\theta,$$

$$S_{xy} = S_{yx} = \rho g \iint ncos\theta \sin\theta S(\sigma, \theta)d\sigma d\theta,$$

$$S_{yy} = \rho g \iint [nsin^2\theta + n - 0.5]S(\sigma, \theta)d\sigma d\theta,$$

Terms	Walstra, Roelvink [16]	Nguyen, Jacobsen [5]
Pressure gradient	$-\frac{1}{\rho}\frac{\partial\overline{p}_a}{\partial x} - g\frac{\partial\overline{\zeta}^L}{\partial x}$	$-\frac{1}{\rho}\frac{\partial\overline{p}_{a}}{\partial x}-g\frac{\partial\overline{\zeta}^{L}}{\partial x}$
Conservative wave forcing	$-\left(\frac{\partial \overline{\widetilde{u}^2}}{\partial x} + \frac{\partial \overline{\widetilde{u}}\overline{\widetilde{v}}}{\partial y} + \frac{\partial \overline{\widetilde{u}}\overline{\widetilde{w}}}{\partial z}\right)$	$-\left(\frac{\partial \overline{\widetilde{u^2}}}{\partial x} + \frac{\partial \overline{\widetilde{uv}}}{\partial y} + \frac{\partial \overline{\widetilde{uw}}_{CS}}{\partial z}\right) + \frac{1}{\rho} \frac{\partial \overline{p}^S}{\partial x} + T_1$
Non-conservative wave forcing	$-\frac{1}{\rho}\left(\frac{\partial\overline{\tau}_{11}^{s}}{\partial x}+\frac{\partial\overline{\tau}_{12}^{s}}{\partial y}+\frac{\partial\overline{\tau}_{13}^{s}}{\partial z}\right)$	$\frac{F_{br,1}}{\rho}$: applied as a body force
	$\frac{F_{br,1}}{\rho}$: applied as a surface stress	$\frac{F_{mx,1}}{\rho}$: applied as a body force
	$\frac{F_{fr,1}}{\rho}$: applied as a bottom stress	$\frac{F_{fr,1}}{\rho}$: applied as a bottom stress
Turbulence	$\frac{1}{\rho} \left(\frac{\overline{\tau}_{11}^L}{\partial x} + \frac{\overline{\tau}_{12}^L}{\partial y} + \frac{\overline{\tau}_{13}^L}{\partial z} \right)$	$\frac{1}{\rho} \left(\frac{\overline{\tau}_{11}^L}{\partial x} + \frac{\overline{\tau}_{12}^L}{\partial y} + \frac{\overline{\tau}_{13}^L}{\partial z} \right)$
Mass conservation	$\frac{\partial \overline{\zeta}^{L}}{\partial t} + \frac{\partial}{\partial x} \left(\int_{-h}^{\overline{\zeta}^{L}} \overline{u}^{L} dz \right) + \frac{\partial}{\partial y} \left(\int_{-h}^{\overline{\zeta}^{L}} \overline{v}^{L} dz \right) = 0$	$\frac{\partial \left(\overline{\zeta}^{L}+h\right)}{\partial t}+\frac{\partial}{\partial x}\int_{-h}^{\overline{\zeta}^{L}}\overline{u}^{L}dz+\frac{\partial}{\partial y}\int_{-h}^{\overline{\zeta}^{L}}\overline{v}^{L}dz=\frac{\partial \overline{\zeta}^{S}}{\partial t}$
Terms	Kumar, Voulgaris [21]	Nguyen, Jacobsen [5]
Hydrostatic pressure	$-\frac{1}{\rho}\frac{\partial \overline{p}^{H}}{\partial x}$	$-\frac{1}{\rho}\frac{\partial \overline{p}^{H}}{\partial x}$
Conservative wave forcing	$-\frac{\partial J}{\partial x} + \overline{v}^{s} \left[f + \left(\frac{\partial \overline{v}}{\partial x} - \frac{\partial \overline{u}}{\partial y} \right) \right] - \overline{w}^{s} \frac{\partial \overline{u}}{\partial z}$	$-\frac{\partial(J+K)}{\partial x} + \overline{v}^{s} \left[f + \left(\frac{\partial \overline{v}}{\partial x} - \frac{\partial \overline{u}}{\partial y} \right) \right] - \overline{w}^{s}$
	F_1^{br} : applied as a body force	$\frac{F_{br,1}}{\rho}$: applied as a body force
Non-conservative wave forcing	F_1^{sf} : surface streaming	$\frac{F_{fr,1}}{2}$: applied as a bottom stress
	$F_1^{\hat{b}f}$: bottom streaming	$\frac{F_{mx,1}}{\rho}$: applied as a body force