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“Surface waves affect the upper-ocean circulation, air–sea fluxes, and cross-shelf exchange 
due to both conservative and non-conservative effects.”

 COMPAS- SWAN Coupling
Evaluate and develop next-generation numerical modelling techniques and tools for incorporation, with 
the aim of improved prediction of littoral dynamics at a greater range of spatial scales
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zone
❖ Contribute to storm surge, extreme water levels
❖ Wave impacts on currents & currents influence on 

waves

2  |



❖ COMPAS (Coastal Ocean Marine Prediction Across Scales) - 3D 
finite volume hydrodynamic model in CSIRO’s Environmental 
Modelling System (EMS). (Herzfeld,2006; Herzfeld et al.,2020)

• Used at scales ranging from estuaries to regional ocean domains

• Uses the adapted the unstructured C-grid discretisation employed in 
the MPAS (Model for Prediction Across Scales) global ocean model 
for use in Coastal Modelling.

• Operates on Arakawa C-grid, whereby normal velocity components 
are staggered at the edges of Voronoi cells, with fluid height and 
tracer variables located at cell centres (Herzfeld et.al., 2020)

• Advantages of hexagonal mesh:

-spurious modes associated with triangular C-grid meshes are 
absent in these hexagonal cases.

- works well with finite-volume models

The models: COMPAS & SWAN

Figure: Herzfeld et.al., 2020

❖ SWAN (Simulating Waves Nearshore) (Booij et al., 1999; Zijlema et al., 2010)
3rd gen phase averaged wave model
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• JIGSAW (Engwirda, 2017) designed for TRiSK FV scheme Delaunay triangulation - 
Centroidal Voronoi Tessellation

Mesh Generation

Figure:Herzfeld, 2018

Delaunay triangulation

Voronoi Diagram

Gen. point

Figure: Farhan Rizwi
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• Vortex-force representation decomposes the main wave-averaged effects into two physically understandable 
concepts of vortex force and a Bernoulli head

• explicit inclusion of different type of wave–current interaction

• incorporate impacts of depth-limited wave dissipation terms (e.g. wave breaking), higher order nonlinear wave impacts.

• Vertical components of the 3d Radiation stress tensors wave radiation stress change very fast with depth 

• Uchiyama et al., (2010) and Kumar et al., (2012) extended McWilliams et al. (2004) to consider non-conservative conditions by 
adding breaking waves, roller waves, bottom and surface streaming and wave-enhanced mixing through empirical formulas. 
(ROMS, COAWST, SCHISM )

Vortex- Force Formalization and Why?

Momentum

Continuity

Transport
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• No model coupler 

• Compile SWAN as a library object to which 
COMPAS can link using C interoperability 
protocols 

• During initialisation within SWAN, pointers to 
variables within this data structure are set up.

• COMPAS initialises and manages memory for 
wave variables

• SWAN updates information for those variables 
by writing directly to the memory addressed 
rather than transferring the actual data

COMPAS-SWAN Coupling Technical
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• Difference between Eulerian and Lagrangian
velocities and may significantly change the 
transport properties of the system at equilibrium.

• has a crucial importance for the wave-current 
interactions and upper ocean mixing 

Stokes Drift

Composite Iterative Approach based on Romero et al. 2021

Monochromatic (Shallow and at Depth)

Spectral (DW and Intermediate depths)

+

“The framework improves over existing methods not limited by 
water depth or monochromatic assumptions.”
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- Geographical 
Features
• The nearshore reefs

• Tidal channels

• Estuary

• Leeuwin Current

-Observation Points

in-situ coastal wave and 
circulation observations are 
available in this region

Testbed region: Mandurah, Western Australia
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Resolution

• 50 m resolution at the coast 

• 4000 m at the open boundary 

• ~40000 indices

• SWAN t=15 min , COMPAS t=0.5 sec

Forcing Fields

– Winds 

 Conformal Cubic Atmospheric Model (C-CAM) , McGregor 
(2005)

 

– Wave Forcing

 Regional SWAN hindcast (500m) downscaled from

 CAWCR (WW3) Hindcast (4 arc sec),

 Durrant, T. (2014); Trenham, C. E (2014). 

– Water Level 

 BRAN2020 OFAM3 (MOM5)  (0.1 degree)

 Chamberlain et al. (2021)

– Tides

 TPXO Tides

 Egbert, G.D. and Svetlana Y.E (2002) 

Mandurah Testbed : June 2019
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• Surface Elevation (η)

Mandurah, WA Test Bed - June 2019

Hydro only Hydro + Waves Waves- Hydro
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Mandurah, WA Test Bed - June 2019
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Mandurah, WA Test Bed - June 2019
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Mandurah, WA Test Bed - June 2019
Mandurah
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Mandurah, WA Test Bed - June 2019
Rottnest Island
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Mandurah, WA Test Bed - June 2019
Cottlesloe
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• Stoke Drift and Bernoulli Head

Mandurah, WA Test Bed - June 2019
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• Non-conservative WEC Terms

Mandurah, WA Test Bed - June 2019

17  |



• Non-conservative WEC Terms

Mandurah, WA Test Bed - June 2019
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• COMPAS-SWAN coupled model available 
https://github.com/csiro-coasts/EMS

• Importance of incorporating WEC terms into hydrodynamic modelling, particularly for 
surface elevation 

• Vortex-Force Formalization

• Romero et al.,2021 Stokes Drift not limited by water depth or monochromatic 
assumption.

• Wave Roller Model of Svendsen (1984) ➔applied

• Using Roller Energy Density (Reniers, 2004 ) → application in progress 

Summary and Future Work

19  |

https://github.com/csiro-coasts/EMS


Australia’s National Science Agency

Thank you

Cagil Kirezci
Cagil.Kirezci@csiro.au



• Wave rollers act as storage of dissipated wave energy, which is gradually transferred to 
the mean flow causing a lag in the transfer of momentum

• Depth – Induced Wave Breaking

• Wave Roller Contribution 

• Wave Roller Model of Svendsen (1984) ➔applied

• Using Roller Energy Density (Reniers, 2004 ) → application in progress 

Wave Roller Dissipation
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• COMPAS-SWAN coupled model available 
https://github.com/csiro-coasts/EMS

• Importance of incorporating WEC terms into hydrodynamic modelling, 
particularly for surface elevation 

• Vortex-Force Formalization

• Romero et al.,2021 Stokes Drift not limited by water depth or monochromatic 
assumption.

Summary
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Comparison of two models run on same mesh (both on 
COMPAS-generated mesh) and comparison of flow and 
waves for each model

Mandurah Testbed Simulations
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• Air Side – Ocean Side Stress

Wave Induced Forcing -Stress 
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Radiation Stresses
• Radiation Stress Theory (Longuet_higgins and Stewart (1962,1964)
• The radiation stress is the momentum transferred through the water body per unit time (the flux of 

momentum)by wave orbital motion. 

• In this approach the radiation stress representation is a two-dimensional (2D) tensor, and as such it is 
only suitable for depth-averaged numerical models.

• Nguyen et al. (2021) recently obtained 3D depth dependent radiation stress tensor using the 
Generalized Lagrangian Mean (GLM) Method

26  |



27  |


	Slide 1: Wave impacts on nearshore processes in coupled wave-flow models
	Slide 2: Wave-Flow Coupling
	Slide 3: The models: COMPAS & SWAN
	Slide 4: Mesh Generation
	Slide 5: Vortex- Force Formalization and Why?
	Slide 6: COMPAS-SWAN Coupling Technical
	Slide 7: Stokes Drift
	Slide 8: Testbed region: Mandurah, Western Australia
	Slide 9: Mandurah Testbed : June 2019
	Slide 10: Mandurah, WA Test Bed - June 2019
	Slide 11: Mandurah, WA Test Bed - June 2019
	Slide 12: Mandurah, WA Test Bed - June 2019
	Slide 13: Mandurah, WA Test Bed - June 2019
	Slide 14: Mandurah, WA Test Bed - June 2019
	Slide 15: Mandurah, WA Test Bed - June 2019
	Slide 16: Mandurah, WA Test Bed - June 2019
	Slide 17: Mandurah, WA Test Bed - June 2019
	Slide 18: Mandurah, WA Test Bed - June 2019
	Slide 19: Summary and Future Work
	Slide 20: Thank you
	Slide 21: Wave Roller Dissipation
	Slide 22: References
	Slide 23: Summary
	Slide 24: Comparison of two models run on same mesh (both on COMPAS-generated mesh) and comparison of flow and waves for each model
	Slide 25: Wave Induced Forcing -Stress 
	Slide 26: Radiation Stresses
	Slide 27

