

3RD INTERNATIONAL WORKSHOP ON Waves, Storm Surges, and Coastal Hazards October 2-6, 2023

COAMPS-TC ENSEMBLE DRIVEN STORM SURGE SIMULATIONS FOR HURRICANE IAN

¹Nashid Mumtaz, ² Matthew V. Bilskie, Ph.D. - University of Georgia

¹Graduate Research Assistant (nashid.mumtaz@uga.edu),

²Assistant Professor, School of Environmental, Civil, Agricultural and Mechanical Engineering

1. Introduction

- We aim to determine how ensemble storm surge predictions can supplement deterministic storm surge forecasts
- Ensemble predictions are performed by running the storm surge model (ADCIRC) multiple times with tropical cyclone (TC) forcing variations
- Ensemble forecasting provides a potential opportunity to reduce TC forecast error (track and intensity) in storm surge predictions
- Ensemble forecast systems are designed so that each member is equally likely to occur
- In this work, COAMPS-TC ensemble forecasts for Hurricane Ian are used

2. Methods

In ADCIRC, a spin-up simulation is run for 18 days before the meteorological forcing of Hurricane Ian. The spin-up solution is the initial condition for the hurricane hindcast simulation, and similarly, the analysis simulation is the initial condition for the five-day forecast simulation. The timeline of the ADCIRC runs is shown below:

18 DAYS															3.25 DAYS			5 DAYS				
SPINUP															ANALYSIS			FORECAST				

26.5

25.5

2022/09/05 6z

2022/10/01 12z 2022/09/26 12z 2022/09/23 6z

- The emotement member is not perturbed
- The other 20 ensemble members (em01 to em20) were perturbed (wind and pressure), yielding a variety of forecast tracks and intensities
- ADCIRC+SWAN simulations were all member conducted using 21 ensembles
- Plots of the maximum of maximums and average peak storm surge were generated to examine the potential for the results to supplement the non-perturbed simulation
- Water level time-series plots (a) for four NOAA stations in Southwest Florida highlight the varying water level

response to each ensemble member

Additionally, times-series plots (b) of water levels were generated that contain the maximum and minimum water levels among the perturbed ensembles

26.5

25.5

Future work

We are in the early stages of this work. Some of our next steps include:

- Perform ADCIRC ensemble simulations for the forecast period starting on September 27, 2022 12Z
- Physics-Informed Machine Learning (PIML) will be developed to quickly generate probabilistic flood maps as performing ADCIRC+SWAN simulations for each ensemble is computationally expensive and time-consuming.

Acknowledgments

This work was supported by the National Oceanographic Partnership Program (NOPP) through Award N00014-21-1-2184.

> **Contact:** nashid.mumtaz@uga.edu mbilskie@uga.edu