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Motivation
• Representation of a bottom is important in obtaining accurate solution for hydrodynamic 

simulations.

• The bottom profile is typically approximated on the grid level.

• A large amount of topographical detail could be lost in the low-resolution case.
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• Casulli (2009) devises a subgrid wetting / drying algorithm using a porosity function to ensure 
the positivity of the water column and determine the partial filling of cells from the subgrid 
bathymetry.



Motivation (cont’d)

• The ADCIRC hydrodynamic model has successfully 

been used in many tide and storm-surge applications.

• Selective spatial application of subgrid correction

• This work pursues a combination of 
• Standard ADCIRC for deep water ~ coast 

• A locally mass conservative method for coast ~   
floodplain resolving subgrid-scale topo/bathy

• The choice of this work for the locally conservative 
method

• The discontinuous Galerkin (DG) method with subgrid 
correction
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DEM + Unstructured mesh

→ Lookup tables are created for each element 
     and each edge.



Averaged 2D Shallow Water Equations (SWE)
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Spatial Discretization: Discontinuous Galerkin FEM

• Favorable properties of DG FEM
• Conserves mass locally
• Stable and accurate for a larger range of the Froude number
• Orthogonality in unstructured mesh is not required

• G. Fu’s formulation1

• Gives the well-balanced property
• Has a high affinity with the governing equations with subgrid corrections

• Other specs in the discretization design 
• Piece-wise constant in space  Requirement from subgrid
• Forward Euler in time  For computational efficiency
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1 G. Fu, Journal of Scientific Computing, 2022. 



Coupling ADCIRC and DG-subgrid

• Two models are coupled through mass flux boundary conditions in the 

following steps:

1)  The states on both sides are shared with a coupler program.

2)  The coupler program computes mass flux using a Riemann solver.

3)  The computed mass flux is sent back to two models.

• The communications are processed through MPI.
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ADCIRC DG-subgridCoupler

1) 𝜂, 𝑄𝑋, 𝑄𝑌 1) 𝜂, 𝑄𝑋, 𝑄𝑌 

2) Riemann Solver
3) 𝑄𝑁 3) 𝑄𝑁 



Test 1: Parabolic Bowl Problem [Thacker, 1981]
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Test 1: Configurations
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ℎ ~ 20km

• h = 20 (∆t = 200), 10 (∆t = 100), 
       and 5km (∆t = 50s)

• Subgrid scale hs = 1 km.

Exact Initial Surface Elevation

1400km



Test 1: Unstructured Mesh

ℎ ~ 20km ℎ ~ 10km ℎ ~ 5km



Test 1: Results,  h ~20km  
            (DG-subgrid, no coupling)
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Test 1: Results,  h ~20, 10, and 5km 
            (DG-subgrid, no coupling)
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Test 2: Calcasieu Lake, Hurricane Rita
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Test 2: Calcasieu Lake, Hurricane Rita
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Wind P - Patm

max | w | min | P - Psatm |



Test 2: Unstructured Mesh
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Coarse

h ~2.5km, 1.2K nodes

Refine1, 4.8K nodes

h ~1.25km, 1.2K nodes

High res, 4.8K nodes

h ~1.25km, 1.2K nodes

ADCIRC (reference)Coupled ADCIRC and DG-subgrid



Test 2: ADCIRC and DG-subgrid Coupling
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Test 2: Results
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Coarse, h ~2.5km Refine1, h ~1.25km High res, h ~1.25km

Coupled ADCIRC and DG-subgrid ADCIRC (reference)

Post processed using DEM



Test 2: Results vs USGS Station Observations
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Test 2: Results vs USGS Station Observations
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Test 2: Results vs USGS Station Observations
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Summary

• A new subgrid model discretization is proposed with Fu’s DG formulation.

• A method to couple CG-FEM (ADCIRC) and DG-subgrid is proposed.

• The proposed methods are validated in comparisons with exact solutions 
and storm surge observations during Hurricane Rita. 
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Future Work
• Improvement of solution accuracy

• Application to larger-sale realistic problems



Thank you.

Shintaro Bunya

sbunya@unc.edu
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