# Adding Baroclinicity and Sea Ice Effects to a Global Total Water Level Forecast Model

#### Pengcheng Wang and Natacha B. Bernier (ECCC)

Acknowledgement: K. R. Thompson (Dalhousie University) O. Huziy, B. Pouliot, F. Dupont (ECCC)





#### Introduction

1. Baroclinic contributions: several decimeters, hours to seasons (e.g., seasonal cycle, equatorial waves, Rossby waves, coastal trapped waves, tides).

Characteristics of coastal trapped waves (CTWs):

 $Bu = \frac{N^2 H^2 / f^2}{L^2} \begin{cases} Bu \ll 1 & \text{Barotropic shelf wave} \\ Bu \gg 1 & \text{Baroclinic Kelvin wave} \end{cases}$ 

*N*, *H*, and *L* are typical values of buoyancy frequency, depth and shelf width, *f* Coriolis parameter (Huthnance, 1978)

#### 2. Sea ice can modulate tides and attenuate storm surges.

Bathymetry of the ocean floor showing the continental shelves (red) (NOAA)

Questions:

- How to include the two processes in the global system in an efficient way so that the model can also be used for ensemble forecasts and climate studies?
- What are their impacts on predicted water level?

## Baroclinicity

#### The Ocean Model (Global 1/12°, NEMO)

$$\frac{\partial \mathbf{u}_{h}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}_{h} + f \times \mathbf{u}_{h} = -\nabla_{h} \left[ \frac{p_{a}}{\rho_{0}} + g(1 - \alpha_{s})\eta - g\eta_{A} \right] \\ + g \int_{z}^{0} \frac{\rho - \rho_{0}}{\rho_{0}} dz \left[ + A_{h} \nabla_{h}^{2} \mathbf{u}_{h} + \frac{\partial}{\partial z} (A_{z} \frac{\partial \mathbf{u}_{h}}{\partial z}) + \lambda(\mathbf{x}) \langle \bar{\mathbf{u}}_{obs} - \bar{\mathbf{u}}_{h} \rangle \right] \\ \nabla \cdot \mathbf{u} = 0 \\ \frac{\partial T}{\partial t} + \nabla \cdot (T\mathbf{u}) = K_{h} \nabla_{h}^{2} T + \frac{\partial}{\partial z} (K_{z} \frac{\partial T}{\partial z}) - (r(T - T_{f})) \\ \frac{\partial S}{\partial t} + \nabla \cdot (S\mathbf{u}) = K_{h} \nabla_{h}^{2} S + \frac{\partial}{\partial z} (K_{z} \frac{\partial S}{\partial z}) - (r(S - S_{f})) \right]$$

Weakly nudged to daily  $T_f$ ,  $S_f$  provided by a coarser resolution, data-assimilative model (i.e., ECCC's 1/4° GIOPS, Smith et al., 2018).



- At low frequencies (> ~15 d), T is guided by the  $1/4^{\circ} T_f$ .
- At high frequencies, T is less or not constrained by  $T_f$ .

#### **Observations**

211 tide gauges fromUniversity of HawaiiSea Level Center

Oct. 2019 - Feb. 2021



#### Capturing baroclinicity with an optimized vertical grid

Balancing model performance and computational cost



#### Impact of adding baroclinicity on predicted water level

Run<sup>Bt</sup><sub>9</sub>: barotropic run with 9 levels Run<sup>Bc</sup><sub>9</sub>: baroclinic run with 9 levels







#### The role of coastal trapped waves

Tidal residual anomaly predicted by Run<sup>Bt</sup><sub>9</sub>

Difference in tidal residuals predicted by  $\operatorname{Run}_{9}^{\operatorname{Bc}}$  and  $\operatorname{Run}_{9}^{\operatorname{Bt}}$  (henceforth  $\Delta \eta_{bc-bt}$ )



Hovmoller diagram of  $\Delta \eta_{bc-bt}$  (m) (left panel) and its variability in interseasonal, subseasonal and synoptic bands (right panels)





## Sea ice effects

#### **Parameterized ice-ocean stress**

Surface stress 
$$\boldsymbol{\tau}_{s} = (1 - \alpha)\boldsymbol{\tau}_{ao} + \alpha\boldsymbol{\tau}_{io}$$
  
Ice-ocean stress  $\boldsymbol{\tau}_{io} = \rho_{0}C_{io}|\boldsymbol{u}_{ice} - \boldsymbol{u}_{surf}|(\boldsymbol{u}_{ice} - \boldsymbol{u}_{surf})$   
Relative velocity  $\boldsymbol{u}_{ice} - \boldsymbol{u}_{surf} = (\boldsymbol{u}_{ice}^{T} - \boldsymbol{u}_{surf}^{T}) + (\boldsymbol{u}_{ice}^{S} - \boldsymbol{u}_{surf}^{S})$   
 $= [a^{T}(\boldsymbol{x})\mathbf{R}(\varphi(\boldsymbol{x})) - \mathbf{I}]\boldsymbol{u}_{surf}^{T} + a^{S}(\boldsymbol{u}_{ice}^{S*} - \boldsymbol{u}_{surf}^{S*})$ 

Derive a transfer function describing the response of  $u_{ice}^{T}$  to  $u_{surf}^{T}$ ,  $u_{ice}^{T} \approx a^{T}(x)\mathbf{R}(\varphi(x))u_{surf}^{T}$ 

where  $a^T$ ,  $\varphi$  are inferred from  $u_{ice}^{T*}$ ,  $u_{surf}^{T*}$  by scaling and rotating the ice and ocean tidal ellipses so that their semi-major axes are equal.



The asterisk \* denotes a quantity that comes from an external ice-ocean model.



Observed frequency of landfast ice occurrence



Derived monthly  $\varphi$ 

#### **Observations**

Red: Data available in the model simulation period (Nov 2018-Apr 2022) Green: Unavailable for Nov 2018-Apr 2022





#### Ice effects on the max seasonal modulations in M<sub>2</sub> Amp (top) and Pha (bottom)



#### Ice-induced shifts of M<sub>2</sub> amphidromes

• Amphidromes over ocean

Amphidromes over land

Color: amplitude White lines: co-phase lines



Amphidromes shift towards the coast where they experience stronger tidal dissipation, resulting in both positive and negative changes in amplitude and phase.

#### Sea ice effects on predicting storm surges



- Inverse barometer contribution removed from both OBS and MOD to better visualize ice effects.
- Ice-induced attenuation up to 0.25 m at Alert, 1.0 m at Tuktoyaktuk.



### Summary

- Efficient ways of adding baroclinicity and sea ice effects to TWL systems are developed by taking advantage of external fields (3D T&S, ice fraction, ice velocity and surface currents) provided by advanced data-assimilative ice-ocean systems.
- Adding baroclinicity effectively captures variability on timescales of hours to seasons. Important contributions of baroclinically-modified CTWs (up to 42 cm) were shown to be resolved.
- Adding ice effects leads to significantly improved tides (seasonal changes) and surges (up to 1 m). Dominant driving mechanism for the seasonality of tide: under-ice friction, and its accompanied amphidrome shifts (up to 125 km).

#### **References:**

Wang, P., N.B. Bernier, and K.R. Thompson (2022). Adding baroclinicity to a global operational model for forecasting total water level: Approach and impact. *Ocean Modelling*, 102031. <u>https://doi.org/10.1016/j.ocemod.2022.102031</u>

Wang, P. and Bernier, N. B.: Adding Sea Ice Effects to A Global Operational Model (NEMO v3.6) for Forecasting Total Water Level: Approach and Impact, *Geosci. Model Dev.*, 2023. <u>https://doi.org/10.5194/gmd-16-3335-2023</u>