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WAVE REANALYSIS TRENDS

Trend is calculated with
Sen’s slope estimator in
conjunction with a modified
Mann-Kendall method that
accounts for the effects of
lag-1 autocorrelation by
iterative pre-whitening (\Wang
et al, 2015)
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Modern reanalysis/hindcasts
exhibit non-negligible trend
differences.

Agreement increases after
removing CFSR-derived
products, which have been
shown to have a marked
discontinuity in 1994.

However, regardless of the
agreement among
reanalysis/hindcasts, there
are indications that they are
In general temporally
Inhomogeneous.

(Casas-Prat et al, accepted) using ensemble of modern reanalysis statistics (Morim et al, 2022)
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TEMPORAL INHOMOGENEITY

Global annual mean Hs & inter-model variability

(Casas-Prat et al, accepted)
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Tendency of wave reanalysis/hindcast to become
closer over time

Also, there is a marked increase in atmospheric
observations:

ERAS5 wave reanalysis increased from approximately
0.75 million obs per day in 1979 to around 24

million per day by the end of 2018 (Hersbach et al,
1986)
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Increase of
type/amount of
wave observations

Yearly number of Hs observations

T T T T
1975 1980 1985 1990 1995 2000 2005 2010

Yaar

=107

=] - ha [7+] = [} [=+] =l =] [1=]
T T T T T T T T

T T

[ Wave buoys

I | T Altimeter missions
SAR missions

1 1 L
1970 1975 1980 1985

.HH |

990 1995 2000 2005 2010 2015 2020

(Casas-Prat et al, accepted)



AGREEMENT DEPENDS ON METHOD

b) H” DJF

b)
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(Erikson et al 2022) -0.02 -0.01 0 0.01 0.02
HS (m/yr)

Multi-member ensemble mean > inter-member
standard deviation

>50% models exhibit significant trends and 80% of
those agree on the sign.




SATELLITE

Integrated Marine
Observing System
(Ribal & Young, 2019)

(b) Annual mean H; trend

The European Space Agency (ESA)
Sea State Climate Change Initiative (CCI) v2 & v3.
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(Casas-Prat et al, accepted)
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Differences in multi-mission
calibration procedures can
lead to striking differences
in trends, in agreement

with previous results (Dodet
et al, 2020; Timmermans et al,
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INTERNAL CLIMATE VARIABILITY

Climate varies naturally over different time scales. Internal (or natural) climate variability refers to the
variation in climate parameters due to interactions of the Earth system rather than being caused by
changes in external forcing. This variability can mask or enhance human-induced changes.

Climate simulations (and observed climate!) are only one possible realization of the climate.

Internal climate variability cannot be properly assessed from single climate realizations, especially if
they cover a few decades.



INTERNAL CLIMATE VARIABILITY

The importance of internal climate variability has been demonstrated for many
climate variables (e.g. temperature, precipitation, etc), impacts (e.g. mortality,

RCPs
Models

Realizations

Uncertainty by source
{normalized)
2010-2039 2040-2069 2070-2099

uncertainty source

s model B scenario internal

Mortality
(Schwarzwald et al, 2022)

field crops, etc), and type of assessments, such as:
- Detection and attribution

- Trend assessment

- Estimation of near-future projected changes

- Extreme value analysis

2081-2100
- Validation of model with observations prmpnmp—— b
Orcr
" RCP—WMM :
H . AL {1 | GCM-RCP I
However, there is poor knowledge on the role of internal ” R con v ;

climate variability on ocean wave climate assessments.
The COWCLIP large ensemble of CMIP5-driven wave
projections provided insight into contribution of uncertainty
derived from scenario, climate model and wave model, but
internal climate variability was not well covered.

Fraction of total uncer i nty

This is partially due to do the lack of Single Model Initial PTA A s son oo
Condition Large Ensembles (SMILE)-based ensembles. Wave height

: RCP—GCM-WMM
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) |
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(Morim et al, 2019)



d4PDF-WaveHs dataset

First SMILE-based wave height large
ensemble:

— 100 members of 6-hourly Hs for the
period 1951-2010 on 1°x1 ° lat-lon grid.

— — 6000 years of data!

Forcing: d4PDF (Database for policy

decision-making for future climate changes)
(Mizuta et al, 2017; Ishii & Mori, 2020)

60-km resolution AGCM historical
ensemble simulations.

» Different initial conditions, small perturbations
of Sea Surface Temperature, Sea Ice
Concentration and Sea Ice Thickness (in
relation to observational uncertainty).

« MRI-AGCM is an atmospheric-only model and
therefore these low boundary perturbations
account for the role of the ocean in the internal
climate variability.

Model Exp. Configuration

« MRI-AGCM/NHRCM
 60km to 20km
# \h\‘ « Period: 60yrs
O * Initial perturbation
“MRI-AGCM « 100 for historical
Dx=60km res. e 15 for future/SST
» Forcing
« SST and sea ice
« COBE2-SST
* 6 SSTs from
CMIP5
scaled +2,4K

BVIRI-NHRCM |~ >
~jAxE20km res. | - no-GHE  Historical +4K/+2K
Japan Meteorological (6000yrs)  (6000yrs) (5400yrs)

Research Institute




DATA AVAILABILITY

d4PDF-WaveHs Government of Canada Open Data Portal
I * onoégF.lnc}gnt dGL?lév:r:’ggg]ent Search Canada.ca n

MENU s

Canada.ca » Open Governmen t » d4PDF-WaveHs: the first...

d4PDF-WaveHs: the first SMILE-based ensemble of global
historical wave height

https://doi.org/10.18164/d68361d0-8141-48b9-a25e-a9bc98d71438

d4PDF Data Integration and Analysis System Program
(3PB)

ad
D I A Data Integration and Analysis System Program Home About Data & Apps Themes Results News

d4PDF Data Download System

https://diasjp.net/en/service/d4pdf-data-download/
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OCEAN WAVE MODELLING APPROACH

Multivariate regression model (wang et al, 2012, 2014)

K

H,=a+ Zka“ +
k=1

|

P

cpHr_

p=1 \

M-order

5 + U, —— autoregressive
process (white
noise if M=0)

|

SLP-derived predictors:
- Anomalies of 6-hourly SLP (Sea Level Pressure) (1)

- Anomalies of 6-hourly squared SLP gradient (geostrophic wind proxy) (1)

\

Lagged-dependent variable

- Associated Principal Components (PCs) (60)
(anomalies are relative to the 1981-2000 mean)
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SLP gradients and H, are transformed using Box-Cox function to make data closer to Normal distribution.

Then this model becomes non-linear.

F test with equivalent sample size (von Storch and Zwiers, 1999) is used to select final predictors (from 62-

predictor pool), P and M.

Model calibrated (and predictors bias-corrected) with ERA-interim data. Model validation with WW3 wave
simulations (Shimura & Mori, 2019).
Method already applied to generate CMIP5-based global wave projections, that were integrated in the
COWCLIP mega ensemble of wave projections (Morim et al, 2019).




TREND COMPARISON - WAVE MODELLING METHODS

(a) Annual mean H trend - Dynamical (b) Annual mean H; trend - Statistical
Reasonable
agreement
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(Casas-Prat et al, 2022)



TREND COMPARISON - WAVE MODELLING METHODS

WW3
(0.5°)

(a) Annual mean H trend - Dynamical

(b) Annual mean H trend - Statistical
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(Casas-Prat et al, 2022)
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Trend average

ANNUAL MEAN HS
(1951-2010)

Ensemble average of the annual mean Hs
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ANNUAL MAXIMUM HS Trend averaae
(1951-2010)
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CLIMATOLOGY - COMPARISON AGAINST
OTHER PRODUCTS
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EVOLUTION OF REGIONAL MEAN :

A Global annual mean H, time series
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TREND - COMPARISON AGAINST OTHER PRODUCTS
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figures shows large trend variability
among d4PDF runs, with a similar
spread to what is seen for multi-
model ensembles
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INTER-MODEL VS INTERNAL VARIABILITY
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uncertainty due to internal climate variability.




WHAT HAPPENS IF WE USE ONLY ONE CLIMATE REALIZATION?

Annual mean Hs Annual max Hs
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CONCLUSIONS

Reanalysis/hindcast present temporal inhomogeneities and therefore their use for trend
assessment is questionable (agreement among reanalysis/hindcasts does not guarantee
temporal homogeneity).

Trend assessment is challenging (temporal inhomogeneities, calibration uncertainty, model
uncertainty, etc). Moreover, the internal climate variability complicates the assessment of
trends.

We presented d4PDF-WaveHs dataset, which is a potential tool to assess the internal
climate variability in wave climate assessments and their application to trend assessment,
extreme value analysis, etc.

While the internal climate variability has little influence on the annual mean Hs climatological
mean, it greatly impacts the associated trends. This variability varies regionally, and it is
comparable to the role of climate model uncertainty.

Using only one climate realization can lead to miss-assess trends in some areas (with
probability >50%). The optimal ensemble size depends on the region and target statistics,
but a general recommendation would be to at least consider 10 members.
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JOB OPPORTUNITY

POSTDOCTORAL RESEARCHER POSITION (Toronto, Canada)
(with possibility to become INDETERMINATE)

Wave and storm surge modelling
to develop Canada-focused coastal water level predictions

We are seeking an enthusiastic postdoctoral researcher with experience in storm surge modelling (e.g. NEMO) and
development and statistical analysis of large climate datasets. Experience in ocean wave modelling (e.g. WW3) and
machine learning methods will be considered an asset.

This research will contribute to the creation and analysis of National Climate Scenarios to support climate change
adaptation in Canada, in the framework of the Canada’s National Adaptation Strategy.

The postdoctoral researcher will work at Environment and Climate Canada with an interdisciplinary team of scientists
from the Climate and Meteorological Research Divisions.

If you are interested or know someone who might be interested, please reach out merce.casasprat@ec.gc.ca

Thoukas !
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