Evaluation of CMIP6 global high-resolution wind forcing performance for regional wave climate modeling off the coast of South-East Australia M. Lorenzo, A. Meucci, J. Liu, I. R. Young, M. Onorato

matteo.lorenzo@unito.it

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards

5th October 2023 - University of Notredame

Summary

- An introduction to regional wave climate modeling
- Research methodology
- Wind forcing climatology comparison
- Regional wave climate modeling results: mean and extremes climatology

1. To provide a direct evaluation of the CMIP6 surface wind speed spatial resolution impact on regional wave climate modeling

2. To assess different strategies for regional wave climate modeling

Research goals

Understanding regional ocean wave climate

How wind waves extremes impact on South-East Australia wave climate

- Coastal safety
- Environmental impact

Evaluation of high-res wind for regional wave climate modeling

M. Lorenzo

Evaluating global historical trends Wind speed and significant wave height, 1985-2018*

M. Lorenzo

Experiments and datasets

Models with 3-hourly surface wind speed for the 30-years 1985-2014 from the Meteorological Research Institute (Japan)

Experiments: Coupled (ocean-atmosphere) Model Intercomparison Project, Atmospheric (only) MIP and HighResMIP

Benchmark: ERA5

	CMIP CCAM downscaled MRI-ESM2-0 Resolution 12.5 Km
ıa	et al., 2018) HighResMIP MRI-AGCM3-2-S Resolution 25 Km

Methodology – Wave climate simulations To evaluate the impact of high-resolution surface winds

M. Lorenzo

Global Wave Model - setup Implemented on WAVEWATCH III v6.07

Irregular Regular Irregular grid*

Curv. grid 34 Km res. @70°N

Regular 0.5° rect. grid 55 Km res.

Curv. Grid. 34 Km res. @70°S

*(Rogers et al., 2018)

Sea-ice

- <25% open ocean
- 25% < SI < 75% In deacy
- >75% land

Physics

- ST6 parametrization
- DIA scheme non-linear int.
- No currents

Outputs (Meucci et al., 2023)

- 3-hourly re-gridded over a global 0.5° regular grid
- Spectral resolution: 50 freq. (0.35 -0.96 Hz) and 36 dir. (delta = 10°)

Regional Wave Climate Model – setup Unstructured grid for the South-East of Australia*

- Research domain: 137-155° E, and 35-45° S
- Grid resolution from 10 Km to 500m

- Same ST6 physics as the global model
- Complex bathymetry

*Liu J. et al., 2022

GCMs MIP experiments comparison U10 mean 1985-2014 – global domain

CMIP MRI-**ESM2-0** Res. 100 Km

AMIP MRI-**ESM2-0** Res. 150 Km

M. Lorenzo

Evaluation of high-res wind for regional wave climate modeling

Downscaled CMIP CCAM MRI-ESM2-0 **Res. 12.5 Km**

HighResMIP MRI-AGCM3 Res. 25 Km

GCMs MIP experiments comparison U10 mean 1985-2014 – regional domain

AMIP MRI-**ESM2-0** Res. 150 Km

Downscaled CMIP CCAM MRI-ESM2-0 **Res. 12.5 Km**

HighResMIP MRI-AGCM3 Res. 25 Km

Climate simulations availability

WW3 with 3-hourly surface wind speed for the 30-years 1985-2014 from the Meteorological Research Institute (Japan)

Experiments: Coupled (ocean-atmosphere) Model Intercomparison Project, Atmospheric (only) MIP and HighResMIP

	CMIP CCAM (G) downscaled MRI-ESM2-0 12.5 Km
าล	HighResMIP (G+R) MRI-AGCM3-2-S 25 Km

Benchmark: WW3/ERA5 Hindcast (Liu et al., 2022)

Evaluation of high-res wind for regional wave climate modeling

Climate simulations availability

WW3 with 3-hourly surface wind speed for the 30-years 1985-2014 from the Meteorological Research Institute (Japan)

Experiments: Coupled (ocean-atmosphere) Model Intercomparison Project, Atmospheric (only) MIP and HighResMIP

	CMIP CCAM (G) downscaled MRI-ESM2-0 12.5 Km	
າa	et al., 2018) HighResMIP (G+R) MRI-AGCM3-2-S 25 Km	

Benchmark: WW3/ERA5 Hindcast (Liu et al., 2022)

Evaluation of high-res wind for regional wave climate modeling

Regional wave climate modeling Mean significant wave height, 1985 – 2014

Forced with u10 from MRI-ESM2-0 - AMIP 150 Km

M. Lorenzo

Evaluation of high-res wind for regional wave climate modeling

Forced with u10 from MRI-AGCM3-2-S - HighResMIP 25 Km

M. Lorenzo

A study on the performance of regional wave modeling using historical data and different approaches

Conclusions

- The assessment of the AMIP and HighResMIP-forced RWCM results showed that higher wind speed forcing res. does not imply larger extremes in the region of SE Australia
- HighresMIP has a better climatology than the AMIP std res. product
- The CMIP and AMIP models are biased high in the Southern Hemisphere, particularly over the Southern Ocean

- To extend our analysis to Tm02, CgE, wave direction
- CMIP CCAM downscaling* evaluation

CMIP (G+R MRI-ES 100 k

AMIP (G+R MRI-ES 150 k

Future steps

) low-res	CMIP CCAM (G+R) downscaled
M2-0	MRI-ESM2-0
Km *Skytus.	et al., 2023 12.5 Km
) low-res	HighResMIP (G+R)
SM2-0	MRI-AGCM3-2-S
Km	25 Km

Thanks for the attention

matteo.lorenzo@unito.it

M. Lorenzo