Evaluation of Spectral Wave Models Physics as Applied to a 100-Year Southern Hemisphere Extra-Tropical Cyclone Sea State

Alberto Meucci¹, Ian R. Young¹, Acacia Pepler², Irina Rudeva², Agustinus Ribal^{1,3}, Jean R. Bidlot⁴, Alex Babanin¹

¹ Department of Infrastructure Eng., University of Melbourne
² Australian Bureau of Meteorology, Melbourne, VIC, Australia
³Faculty of Mathematics, Hasanuddin University, Indonesia
⁴European Centre for Medium-range Weather Forecast, ECMWF

alberto.meucci@unimelb.edu.au

April 2021 storm

Cape Bridgewater Triaxys buoy removal

Jan. 2022

Port Fairy, April 2021 (ABC News)

ETCs and metocean extremes

• ETCs are synoptic low-pressure system that dominate Earth's weather

- ETCs generate large swells that propagate far and affect global coastlines.
- ETCs are **frequent** and **large** events that dominate global metocean extreme climate statistics

As we are using global **hindcast**, **ensemble forecast**, or **reanalysis datasets** to estimate **1-in-N-year return periods**, for coastal engineering project design, we need to understand how well these models represent the ETC-generated wind-wave fields.

April 2021 storm

b) 2021-04-08 1200 UTC

45°S

60°S

60°E

0

90°E

6

2

(Murray and Simmonds, 1991) Minimum MSLP storm tracking technique

ERA5 Storm track – MSLP, U_{10}^{max} , H_s^{max}

JGR Oceans

RESEARCH ARTICLE

10.1029/2023JC019751

Evaluation of Spectral Wave Models Physics as Applied to a 100-Year Southern Hemisphere Extra-Tropical Cyclone Sea State

Alberto Meucci¹ , Ian R. Young¹, Acacia Pepler², Irina Rudeva², Agustinus Ribal^{1,3} Jean-Raymond Bidlot⁴ 💿, and Alexander V. Babanin¹ 💿

¹Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia, ²Bureau of Meteorology, Melbourne, VIC, Australia, 3Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia, 4ECMWF, Reading, UK

10 ERA5 10m neutral wind speed (m/s)

8

120°E

12

14

150°E

16

18

20

180

Outputs

1-hourly outputs re-gridded over a global 0.5° reg. grid

Spectral res.:

- 50 freq. (0.03/0.035 0.96 Hz)
 - 36 dir. ($\Delta \theta = 10^{\circ}$)

(Meucci et al., 2023)

5

Model simulations

Model settings

c: wind stress calibration f: minimum frequency test r: spatial resolution test

Test ID

ST6-c1f1r1

ST6-c1f2r1

ST6-c1f1r1

ST6-c2f1r1

ST6-c1f1r1

ST4-f1r1

ST6-c1f1r1 ST6-c1f1r2

Minimum frequency resolution test

- $f_{min} = 0.03$ Hz or
- $f_{min} = 0.035 \text{ Hz}$ ST6 wind stress calibration:
 - CDFAC1.0 (Zieger et al., 2015)
- CDFAC1.08 (Liu et al., 2021) Source terms physics:
 - ST6
 - ST4

Global horizontal resolution:

• 0.5°

• 0.25°

WW3 with ERA5 wind and sea-ice forcing (WW3/ERA5):

(Liu et al., 2021; Meucci et al., 2023)

External datasets for comparison:

Global models:

- ERA5 ECMWF reanalysis •
- ERA5H ECMWF wave hindcast • with updated physics

Observations:

- In-situ Tryaxis and Waverider buoys
- Multi-mission scatterometers and altimeter measurements
- **CFOSAT** directional spectra

Altimeter wind speed and wave height

	Hs [m]
Sentinel-3B	17.39
ERA5	14.59

Along track maximum Hs

10-1

Source terms H_s^2 scaling and wind stress

- Difference between ST4 and ST6 wind input magnitude as well as active frequency range
- The wind input (normal stress) is capped through wind stress empirical formulae

 $S(f)/H_s^2$

$$\begin{aligned} \tau_{\text{norm}} &\leq \tau_{\text{tot}} - \tau_{v} \\ \tau_{\text{norm}} &= \rho_{w} g \int_{f_{1}}^{10 \text{ Hz}} \frac{S_{\text{in}}(f)}{C} df \\ \vec{\tau} &= \rho_{a} C_{d} U_{10}^{2} = \rho_{a} u_{\star}^{2} \end{aligned}$$

Ξ

Conclusions

- The picture is a bit more complicated for ETC waves!
- **Bulk adjustment** to wind fields (CDFAC) is useful but **only for systematic biases** in the wind field,
- Wind stress physical constraint should be **revisited** for wind speed between 20 to 30 m/s,
- For ETCs, the inaccuracies found in the wave model generation region far offshore may as well be the cause of the **model biases** in **swell magnitude** and **swell arrival times** at the coastlines.

Any reanalysis, forecast, or hindcast datasets should <u>be treated with care</u> when performing Extreme Value Analysis to estimate one-in-N-year return period for engineering design purposes.

The coupled approach

An ERA6 prototype based on wind speed corrections and the *Janssen and Bidlot* (2022) new results on the wind input term and the background roughness length

