

DEVELOPMENT OF A FLEXIBLE, MULTI-MODEL, REAL TIME, COMPOUND FLOOD FORECASTING SYSTEM FOR TROPICAL AND NON-TROPICAL EVENTS

3RD INTERNATIONAL WORKSHOP ON WAVES, STORM SURGES, AND COASTAL HAZARDS OCTOBER 4, 2023

Zach Cobell¹, Rick Luettich², Shintaro Bunya², Brian Blanton³, Lorena Penuela Cantor¹, Matthew V. Bilskie⁴

> ¹The Water Institute ²University of North Carolina at Chapel Hill ³Renaissance Commuting Institute ⁴University of Georgia

ACKNOWLEDGEMENT

COASTAL RESILIENCE CENTER

A U.S. Department of Homeland Security Center of Excellence

National Oceanographic Partnership Program

working together for sustainability and resilience

- Allow prediction of total water levels in Coastal Louisiana
 - Aid decisionmakers in having best available information and easily digestible
 - Very conservative estimates are not always useful for emergency response

- Flexibility and Ease of Use
 - Run on most Linux systems:
 - HPC Systems
 - Cloud Systems
 - Local Linux machine
 - Containerized Linux
 - Run on multiple architectures:
 - x86_64 Most common
 - aarch64 Growing in popularity with excellent performance
 - Minimally Intrusive Installation
 - User should not need to manually install or manage the environment
 - User should be able to have multiple instances running side by side
 - i.e., development, production

Amazon Web Services (AWS) re:Invent HPC Keynote (2022)

- Allow execution of different models and ease of extension
 - Types of models:
 - Native Compiled: We have the source and can build it on the machine where we will run
 - Native Pre-built: We have a precompiled binary which works with the machine
 - Non-Native Pre-built: We don't have the source or a binary that works on our OS
 - Scripts: Models which are simple enough to be in Python or other scripting languages
 - Why is this necessary?
 - Model geometry reuse \rightarrow Many models already developed nationwide
 - Source code not always available
 - Some models are provided as a Linux binary only, which may not work on all OS's
 - Allow users to extend the models available
 - Minimal requirements to add new models to the system

- Allow best available external inputs transparent to user
- Types of Met forcing
 - GFS [NOAA]
 - GEFS [NOAA]
 - NAM [NOAA]
 - HRRR (CONUS, Alaska) [NOAA]
 - HWRF [NOAA]
 - HAFS-A, HAFS-B [NOAA]
 - COAMPS-TC [NRL]
 - NHC (GAHM) [NOĂA]
 - WPC [NOAA]
- Types of Lateral Inflow Forcing
 - USGS WaterData API
 - River Forecast Center (RFC)

ANATOMY OF A FORECAST SYSTEM

ANATOMY OF A FORECAST SYSTEM

ANATOMY OF A FORECAST SYSTEM

METGET – OVERVIEW

- MetGet initial deployment
 - Service deployed starting in 2021
 - Cloud service which allows modelers to request meteorological data in model native formats from various sources:
 - GFS, GEFS, NAM, NHC, HWRF, COAMPS-TC, HRRR, WPC-QPF
 - Model Formats
 - CF-Compliant netCDF, ADCIRC, Delft3D
 - Model Variables
 - Wind, Pressure, Precipitation, Temperature, Humidity
 - Open-source project
 - <u>https://github.com/waterinstitute/metget</u>
 - Languages: Python, C++
 - Libraries: netCDF, eccodes, sqlalchemy
 - Database: Postgres
 - Frameworks: Kubernetes, Argo, Flask
 - Operational on http://metget.org
 - Contact me for access

kubernetes

WORKFLOW DIAGRAM

MULTI-DOMAIN OUTPUT - HURRICANE IDA, GFS+HWRF

14

TYPHOON MAWAR: GFS+HWRF

MODEL CONTROLLER

FLOODWATER

- Utilizes the ecFlow framework
 - Robust and well tested by other forecasting agencies
 - Allows developers to write python wrapper around system
 - Installable via Anaconda for most systems
 - Buildable from sources for specific architectures (i.e., AWS Graviton)
 - Interreacts well with job schedulers (i.e., SLURM, PBS)
 - Allows users to write and execute code snippets rather than monolithic code
 - The hard stuff is solved:
 - Job triggers, dependencies, tracking, server daemons, etc.
- Floodwater controlled using reusable YAML files
 - Suite, System, Credentials
 - Models are built from an abstract class (model.py)
 - Inheritance \rightarrow Defined set of overloads user must implement

EXAMPLE CONFIGURATION FILE

- Set up:
 - ADCIRC Louisiana model with waves
 - HEC-RAS model for coastal Louisiana for compound flooding
 - XBeach-1D model for barrier islands along Mississippi coast
 - Send push alerts to user if jobs fail or are slow
 - Note that the models may be individually enabled/disabled

Note: This YAML is checked/validated at load time to detect critical errors as early as possible

•••

prefix: adcirc_xbeach_hec_ida directory: /shared/forecast/simulations system_config: /shared/forecast/suites/support/system.yaml credential_file: /shared/forecast/suites/support/credentials.yaml project_code: waves_2023 start: 2021-08-26 00:00 meteo: gfs geometry: /shared/forecast/models/adcirc/cpra_2023_v20a waves: true geometry: /shared/forecast/models/hecras/slamm geometry: /shared/forecast/models/xbeach1d enabled: true

GUI INTERFACE

- ecFlow provides a GUI interface
 - May be linked to multiple HPC centers
 - Allows simultaneous management of many forecast configurations

			ecFlowUI (5.11.3) - (m	enu: admin)	
<u>File</u> Panels <u>R</u> efresh	Servers Tools Help	>			
C AWS-HPC6a64	s d=4s 🔍 🎒 🌽				🕕 🕔 🗊 👫 🕲 🚔 ? 🗛 V= 🖋 🗐 🛛 Z 💡 🔇 🔤 🕯
AWS-HPC6a>adcirc_xb	each_hec_ida>analysis>	HECRAS simulation hecras si	mulation		🍡 (a), 🖉 🔅 🗹
🕨 🔜 Rougarou 🔺 🗎					
■ Bridges2 ▲ 🗄	w20 afa 💧				
- Meteorolo	_vzo_gis ogy: GFS				
MaxDasht	ooardTasks: 0/8 0000	00000			
F alerts					
▼ F forecast	t_ensemble				
▼ F for	ecast_base 🔺				
	LocalTime: 2023-09-29	JT12:00:00			
	E initialization				
•	FADCIRC				
S floodid_hsof	s_nhc_16L				
→ AWS-HPC6a ▲	_coamps_roc _				
- Sadcirc_xbead	ch_hec_ida 🔺				
- Meteorolo	gy: GFS				
- Local	Time: 2021-08-26T00:	:00:00			
-day=1					
F init	tialization				
▼ F HE	CRAS				
	Mesh: SLAMM				
	initialization == complete	and ADCIRC/preprocessing == 0	complete		
	F simulation				
	preprocessing == c	omplete			
	- T hecras_approxim	ate_simulation_wallclock			
	Thecras_prep_sim				
	prog	ress: 23			
	hecras_appro	<pre>kimate_simulation_wallclock == c</pre>	omplete and hecras_prep_sir	mulation == complete	
•	F archive				
	t_ensemble				
▼ F for	ecast_base 🔺	200.00.00			
-	day=1	100.00.00			
•	F initialization				
	F XBEACH1D				
AWS-HPC6a>adcirc_xb	each_hec_ida>analysis>	HECRAS simulation hecras_si	mulation		<i>२</i> .ट
🕕 Info 🛛 🔱 Manual	🗐 Script 🛛 👫 Job	🕙 Job status 🕒 Output	? Why 🔓 Triggers	V= Variables 🛛 🖉 Edit	t 🚯 Node log 🛛 Z Zombies 🌱 Suite filter 🔇 Timeline 🔮
File: /shared/forecast/si	mulations/adcirc_xbeac	h_hec_ida/analysis/HECRAS/simu	lation/hecras_simulation.3 Si	ze: 112 KB	» i, T ⊻ Ѥ ᢣ A Ă ☴ Q 123 Ÿ ▼ 🔲 🕄
ITER2D= 20	erver AWS-HPC6a at 20	23-09-29 15:31:29			
SIMTIME= 105.7333 ABSTIME= 09:44:00					
ITER2D= 25 SIMTIME= 105.8000					
ABSTIME= 09:48:00 ITER2D= 23					
SIMTIME= 105.8667 ABSTIME= 09:52:00					
ITER2D= 22 SIMTIME= 105.9333					
ABSTIME= 09:56:00 ITER2D= 23					
SIMTIME= 106.0000 ABSTIME= 10:00:00					
SIMTIME= 106.0667 ABSTIME= 10:04:00					
ITER2D= 20 SIMTIME= 106.1333					
ABSTIME= 10:08:00 ITER2D= 24					
SIMTIME= 106.2000 ABSTIME= 10:12:00					
ITER2D= 20 SIMTIME= 106.2667					
ABSTIME= 10:16:00 ITER2D= 21					
					Notifications: Abortad Late Restarted
					Notifications: Aborted Late Restarted

GUI INTERFACE

- ecFlow provides a GUI interface
 - May be linked to multiple HPC centers
 - Allows simultaneous management of many forecast configurations

PUSH ALERTS

- System can send pushes to alert operators of errors or slow-to-complete jobs
- More effective than email since alert is targeted

FLOODWATER

- Code will be open source this winter
 - Currently, documentation being written
 - <u>http://github.com/waterinstitute/floodwater</u>

EXAMPLE FORECAST SCENARIO

- Forecast simulation of Hurricane Ida
 - ADCIRC → Coastal Water Levels
 - HEC-RAS \rightarrow Compound Flooding
 - Forced with ADCIRC water level at boundary
 - XBeach-1D → Barrier Island Morphology
 - Forced with ADCIRC water levels and SWAN waves
 - Barrier island transects near Mississippi/Alabama shoreline
 - Forced with NOAA GFS
 - Additional options for Met: HWRF, HRRR, or NHC-GAHM
 - GFS issued every 6 hours
- Forecast Runtimes (5-day forecast)
 - ADCIRC+SWAN: 45 minutes, 1024 cores @ AWS EC2
 - HEC-RAS: 10 minutes, 48 cores @ AWS EC2
 - XBeach1D: Max/Min: 0.5,1.5 hours, 1-core/transect

ADCIRC

HEC-RAS – PRECIPITATION RATE

Forecast Initialized 2021-08-26 06:00

HEC-RAS – WATER LEVEL

Forecast Initialized 2021-08-26 06:00

XBEACH-1D SUMMARY MAPS

XBEACH-1D PROFILES

31

EMERGENCY MANAGEMENT DASHBOARDS EXAMPLE HURRICANE IDALIA

33

WHAT'S NEXT?

- Modeling system operational for 2 years
- Continue refinement and learning from operational experience
- Integration of additional models
- Surrogate Modeling
 - i.e., CHIPS (USACE), in-house methods
- Probabilistic/Ensemble Modeling
 - Generate storm track ensembles
 - NCEP models
 - NHC track based methods
 - i.e., Smith 2017, Pringle 2023
 - Rainfall ensembles
 - NCEP models
 - Villarini et al, etc.

QUESTIONS?

Baton Rouge 1110 RIVER ROAD SOUTH, SUITE 200 BATON ROUGE, LA 70802

WWW.THEWATERINSTITUTE.ORG

─ @THEH2OINSTITUTE

New Orleans 2021 LAKESHORE DRIVE, SUITE 310 NEW ORLEANS, LA 70122