

A Component of the UNC Center for Natural Hazards Resilience

Explicit Modelling of Open Channels and Compound Flooding Prediction in ADCIRC

Shintaro Bunya^{1,2)}, John D. Ratcliff²⁾, Rick Luettich^{1,2)}, and Brian O. Blanton³⁾

¹⁾ Coastal Resilience Center, University of North Carolina at Chapel Hill
²⁾ Institute of Marine Sciences, University of North Carolina at Chapel Hill
³⁾ Renaissance Computing Institute, University of North Carolina at Chapel Hill

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards Oct 1-6, 2023

Motivations to Embed Smaller Channels (1/2)

- Detailed prediction for decision makers
 - Locations monitored by NC State Department of Transport
 - NWM stream network

Many of the locations are at bridges across channels

Motivations to Embed Smaller Channels (2/2)

Without properly represented channels, compound flooding predictions pose issues in both flooding and drainage processes.

- Early / delayed flooding
- Fictitious ponding due to lack of drainage

Approaches to Model Smaller Channels in a Hydrodynamic Model

- 1. More nodes for higher resolutions along channels
- 2. Subgrid correction
- 3. Coupling 1D & 2D (3D) hydrodynamic models
- 3'. 1D Channels represented by 2D triangular elements¹
- → This work pursues Approach 3' and implements it in the ADCIRC hydrodynamic model.

¹ Bunya, et al., Advances in Engineering Software, 2023.

Technique 1: Vertical Element Wall (VEW)

<u>Conventional approach:</u> Trapezoidal model

→ Requires 3 elements across a channel

<u>New approach - Vertical Element Wall:</u>

Rectangular cross-section model with discontinuous depth representation

→ Requires <u>ONLY 1 element</u> across a channel (Compact representation of a channel)

Bunya, et al., Advances in Engineering Software, 2023.

Technique 2: 1D Condensation

<u>Purpose</u>: Eliminate the strict CFL condition due to the small width of a channel for explicit time integration schemes.

Implementation: Expand the stencil by summing up two sets of equations at the paring nodes before finding solutions

<u>Side effect:</u> The pairing nodes hold the same solutions, i.e., no solution variation in the across-channel direction \rightarrow 1D solution

Bunya, et al., Advances in Engineering Software, 2023.

Technique 2: 1D Condensation – At Junctions

Mesh Generation

New mesh with embedded channel networks

Mesh Generation

- A channel mesh requires
 - Channel center lines and their connectivity
 - Channel attributes: width, bed elevation, and bank height

Estimation of Channel Width

Width = Distance from center line to water area boundary x 2

Neuse River and their tributaries

Bed Elevation

Channel bed elevation = DEM (e.g., USGS CoNED DEM) - x m

Neuse River and their tributaries

NCFRIS: North Carolina Flood Risk Information System

Original mesh, 56K nodes

Updated mesh, <u>56K</u> nodes

0 -5

Test 1: Hurricane Florence 2018 Compound flooding, New River, NC, USA

Test 1: Hurricane Florence 2018 Compound flooding, New River, NC, USA

- The coarse model (left) exhibits unrealistic flooding on the floodplain even with a small river discharge in the early stage.
- The VEW1D model (right) exhibits reasonable compound flooding while holding water in the river until the river discharge is increased due to heavy rainfall.

Test 1: Hurricane Florence 2018 Compound flooding along New River, NC, USA

٠

Test 2: Florence Compound Flooding Simulation Results, East Coast Model

East Coast model ~ 56K node

- Time step: 1 sec
- Meteorological forcings: Modified OWI product
- Manning's n along channels: 0.023

14 channels are embedded.

Test 2: Florence Compound Flooding Simulation Results, East Coast Model

WL 19d00h00m00.00s

DUNC

Test 2: Compound Flooding along Neuse River, NC

Test 3: Hurricane Ian 2022 Submerged channels with junctions in East Coast Model

Test 3: Hurricane Ian 2022 Submerged channels with junctions in East Coast Model

Summary

- An approach to efficiently and seamlessly embed 1D channel networks in ADCIRC model has been developed.
- The method and its implementation have been validated by comparisons with
 - Standard ADCIRC solutions,
 - HEC-RAS solutions,
 - Observed water levels in events including compound flooding during Florence and Ian.
- Finding appropriate channel transect properties (i.e., width, depth and bank height) is non-trivial, but feasible to some extent.

Ongoing/Future Work

- Coupling with National Water Model
- More tests with other scenarios including real time predictions

Thank you.

sbunya@unc.edu

2015-ST-061-ND0001-01

2015-ST-061-ND0001-01

