

Frontogenesis and Langmuir Turbulence in a Hydrostatic Model

Yalin Fan U S Naval Resarch Laboratory Email: yalin.fan@nrlssc.navy.mil

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards, 1 – 6 October, 2023

Experiment Design

NCOM – Navy Coastal Ocean Model

Sullivan & McWilliams 2018 (SM18)

Initial front width: 4km

Surface wind forcing: $U = 8.5 \text{m/s} \Rightarrow u_*=0.01 \text{m/s}$ with $C_d \sim = 1.2 \times 10^{-3}$ or Surface cooling: $Q = -100 \text{ W/m}^2$

	NCOM	LES (SM18)
Domain size	38km x 5km x 250m	12km x 4.5km x 250m
Vertical levels	101	256
Horizontal resolution	100 m, 50m, 20m	1.46 m
Turbulence	Vert – Kantha & Clayson (2004)	Solved
	Horiz – Smagorinsky (1963)	

Experiments

V(x,z) nem tow North light heavy, light secondary circulation x - East - X

		Case	Resolution (m)	C _{smag}	Wave direction
		C100	100	0.1	-
	Surface	C50-0	50	0	-
lorth	Cooling $Q = -100 \text{ Wm}^{-2}$	C50	50	0.1	-
		C50-0.2	50	0.2	-
		C50+n	50	0.1	North
		C50+e	50	0.1	East
		C20	20	0.1	-
	Northward /	N100	100	0.1	-
	Along Front	N50-0	50	0	-
	Wind	N50	50	0.1	-
- X	$WSP = 8.5 ms^{-1}$	N50-0.2	50	0.2	-
	$u_{1} = 0.01 \text{ m/s}$	N50+wav	50	0.1	North
	u*-0.0111/5	N20	20	0.1	-
	Eastward /	E100	100	0.1	-
	Cross Front	E50-0	50	0	-
	Wind	E50	50	0.1	-
	$WSP = 8.5 \text{ ms}^{-1}$	E50-0.2	50	0.2	-
	-0.01 = 0.01 m/s	E50+wav	50	0.1	East
	- u _* -0.01111/5	E20	20	0.1	-

U.S. NAVAL RESEARCH

Initial Mean Circulation – step 1

Average Fields at hour = 2 in Cross-Filament Wind Case

E50 / NCOM

Average Fields at hour = 2 in Down-Filament Wind Case

N50 / NCOM

Average Fields at hour = 2 in Surface Cooling Case

C50 / NCOM

U.S. NAVAL RESEARCH LABORATORY

Frontogenetic Progression

Energy Conversion

U.S. NAVAL RESEARCH LABORATORY

Frontogenetic Progression

Effect of Horizontal Mixing

Smagorinsky (1963)

$$\nu_{\perp} = C_{smag} \Delta x \Delta y \left(\left(\frac{\partial u}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right)^{1/2}$$

	Case	C _{smag}	t _m (hour)	L _w (m)
Surface Cooling	C50-0	0	5.9	110
	C50	0.1	5.7	110
	C50-0.2	0.2	5.7	110
Northward Wind	N50-0	0	5.5	190
	N50	0.1	5.5	190
	N50-0.2	0.2	5.5	190
Eastward Wind	E50-0	0	5.1	250
	E50	0.1	5.1	250
	E50-0.2	0.2	5.1	240

 L_w : distance where $\langle u \rangle \partial_x \langle v \rangle$ first falls to zero outside of the filament zone on both side.

U.S. NAVAL RESEARCH LABORATORY

Effect of Surface Gravity Waves

12

Effect of Surface Gravity Waves

	Case	Wave direction	t _m (hour)	L _w (m)
Surface	C50	-	5.7	110
Cooling	C50+n	North	5.5	120
Surface Cooling	C50+e	East	5.5	120

Effect of Horizontal Resolution

	Case	Resolution (m)	t _m (hour)	L _w (m)	
	C100	100	5.9	170	
Surface	C50	50	5.7	110	
Cooling	C20	20	4.5	80	♣
	N100	100	5.8	270	
Northward	N50	50	5.5	190	
Wind	N20	20	5.1	100	•
	E100	100	5.3	300	
Eastward	E50	50	5.1	250	
Wind	E20	20	4.8	180	↓

Most narrow width with Surface Cooling forcing for all resolution Higher resolution → narrow width at arrest earlier arrest time

At 50m, 100m resolution, arrest is limited by grid scale At 20m resolution, horizontal mixing come into play

Summary

- > Hydrostatic Model is able to predict the correct characteristics of filament frontogenesis
- Front arrest is controlled by the model's subgrid-scale artificial regularization procedure. Thus higher resolution is corresponding to stronger frontogenesis in the model
- > The effect of horizontal mixing on frontogenesis is very small
- The parameterized effect of surface gravity wave forcing through vertical mixing is negligible on frontogenesis, and can not represent the physics of wave-front interaction

YOU are the Future of Ocean Prediction

We are: Researchers seeking to understand and represent the fundamental dynamics of the ocean with the long-term goal of transitioning prediction systems to operational use.

Positions:

- **Postdoctoral Fellowships** Annual 2023 salary is \$79,363. Renewable up to 3 years. *Benefits: Medical, Dental, Vision, Life.*
- **Permanent Researchers** Annual salary for full time federal civilian positions ranges from \$80,000 to \$150,000. *Benefits: Medical, Dental, Vision, Life, Pension, Retirement.*
- Variable work schedules with partial telework options (No remote work)
- Applicants must be a US citizen or US permanent residents at time of application
- NRL is an equal opportunity employer **Send your resume or any questions to:**

7320jobs@nrlssc.navy.mil

The Ocean Dynamics and Prediction Branch at the Naval Research Laboratory located at Stennis Space Center, MS has immediate positions available for postdoctoral and permanent researchers.

Our research areas include:

- Thermohaline circulation
- Ocean dynamics
- Air-sea interactions
- Marginal sea upwelling
- High latitude ocean dynamics
- Arctic sea ice modeling
- Turbulence modeling
- Mesoscle dynamics
- Submesoscale structures
- Submesoscale eddy dynamics
- High resolution coastal modeling
- Frontal processes
- Predicting small scale features
- Probabilistic prediction
- Couple ocean/acoustics

- High performance computing
- MPI computational coding
- Ocean internal wave modeling
- Surface wave evolution and forecasting
- Nearshore hydrodynamics
- Cryosphere forecasting
- Automated unmanned control systems
- Autonomous controlled systems
- Satellite observations
- In situ observations
- Data assimilation
- Covariance modeling in assimilation
- Variational assimilation

Be part of the future of ocean prediction.