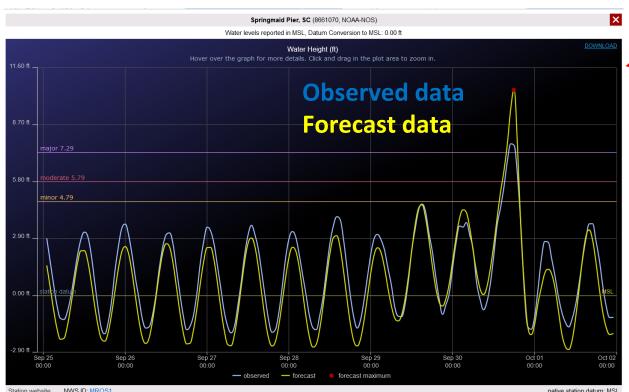
Assessing the systemic error of storm surge model predictions by using LSTM neural networks

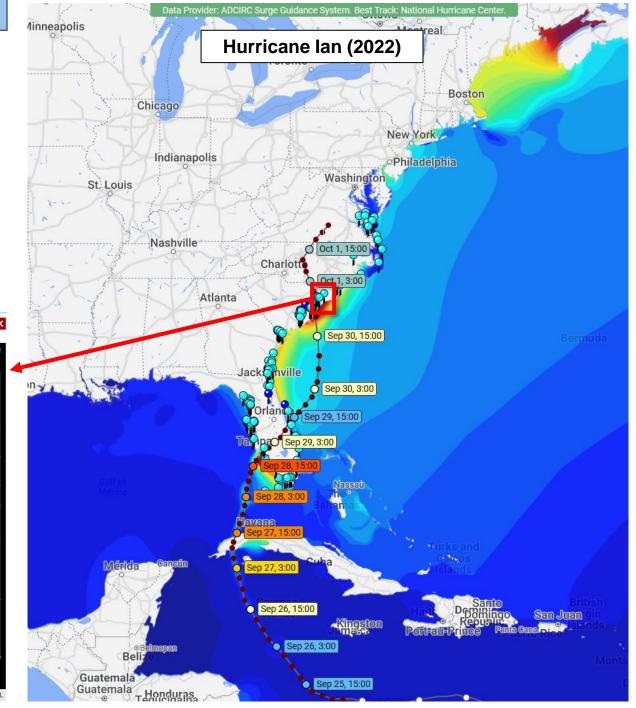
Stefanos Giaremis, Noujoud Nader

CERA - Coastal Emergency Risks Assessment

Background

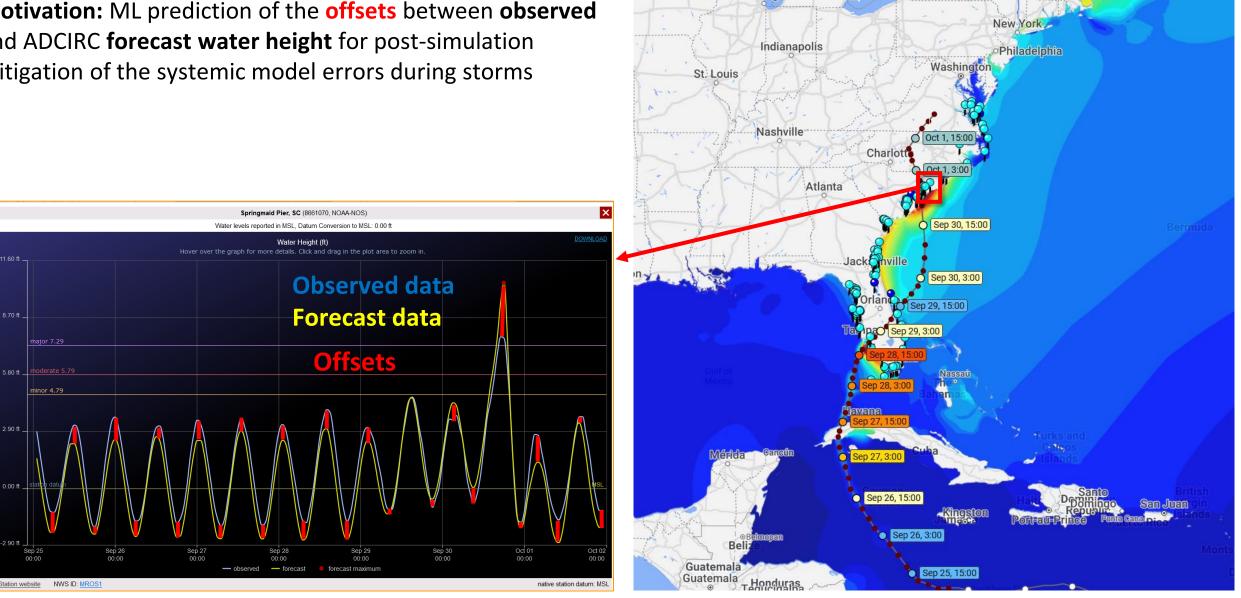
- **CERA website (<u>cera.coastalrisk.live</u>):** Real time measurements of water level, wind etc
- Water level data:
 - Forecast data: ADCIRC
 - **Observed data:** Gauge stations (USGS, NOAA etc.)
- Target case: Hurricane lan





Background

Motivation: ML prediction of the offsets between observed and ADCIRC forecast water height for post-simulation mitigation of the systemic model errors during storms



Ainneapolis

Chicago

Data Provider: ADCIRC Surge Guidance System. Best Track: National Hurricane Ce

Boston

Hurricane Ian (2022)

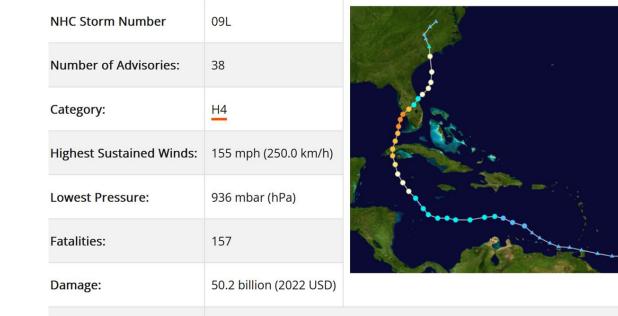
Data

Hurricane IAN 2022

Sep 25 2022 - Oct 2 2022

Historical Storm Archive historicalstorms.coastalrisk.live

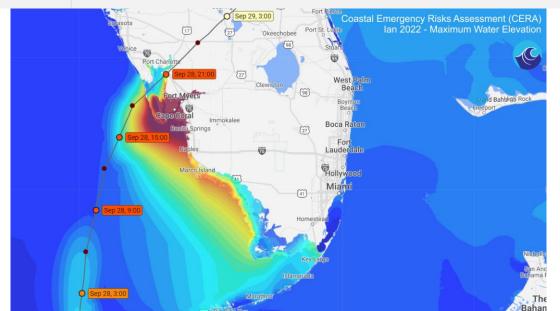
 User-friendly archive with water levels from 60+ U.S. tropical storms from the past 20 years, interfaced to the CERA website



Areas affected:

Cayman Islands • Cuba • U.S. West Florida, East Florida, Georgia, South Carolina

source: Wikimedia



Case Studies

Scenario	Training	Test	
1	lan (2022)	lan (2022)	Same storm
2	Charley (2008)	lan (2022)	Similar storms
3	Harvey (2017)	lan (2022)	Different storms
4	Charley (2008), Wilma (2005), Matthew (2016), Irma (2017), Eta (2020), Elsa (2021)	lan (2022)	Multiple similar storms

Data Info

Hurricane	No. of available gauge stations	Total no. of hourly data for all stations
lan (2022)	263	41764
Charley (2008)	103	14581
Harvey (2017)	89	18334
Wilma (2005)	8	1382
Matthew (2016)	66	10343
Irma (2017)	52	6944
Eta (2020)	252	42327
Elsa (2021)	40	6792
Total		82369

Example of ADCIRC Storm Data from CERA

Charley (2008)

Harvey	(2017)
--------	--------

Wilma (2005)

Matthew (2016)

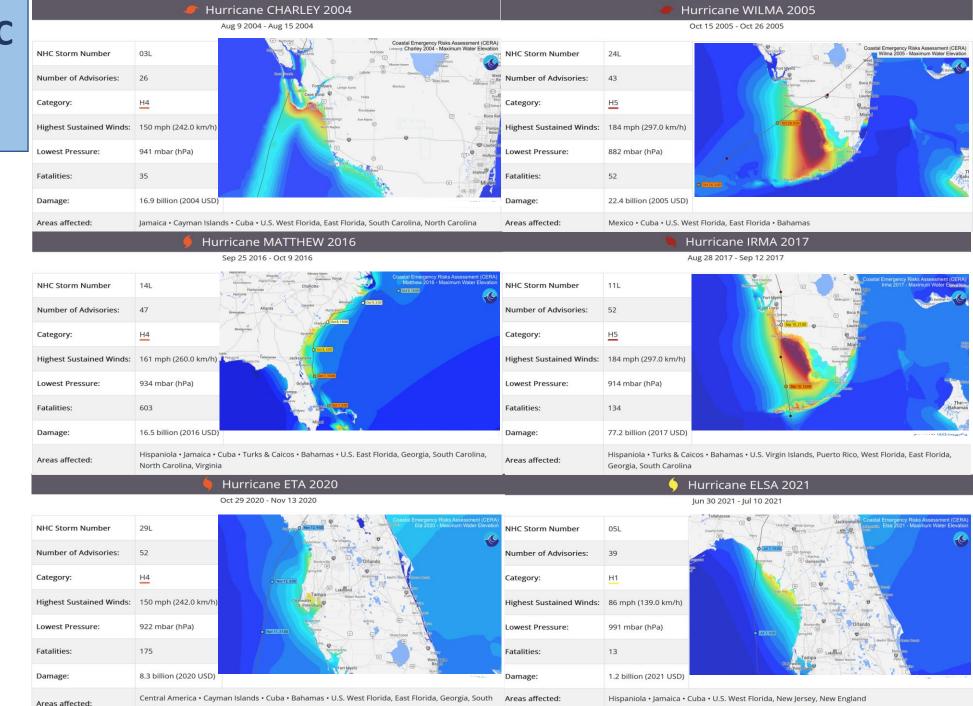
Irma (2017)

Eta (2020)

Elsa (2021)

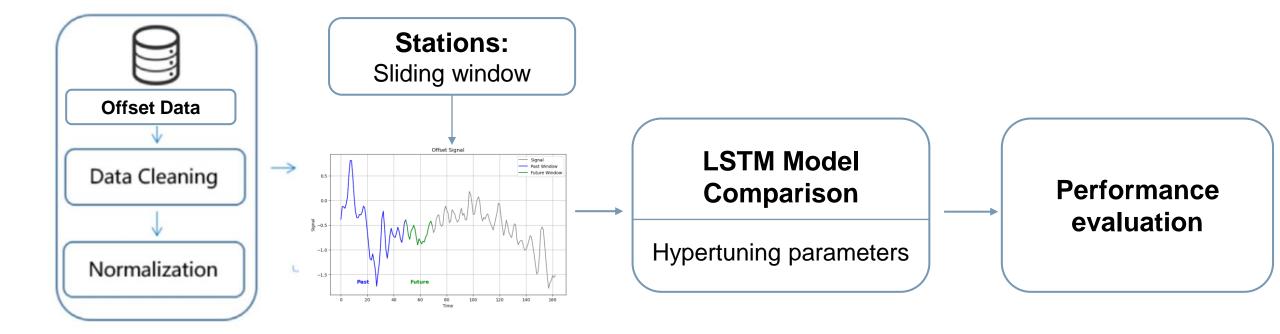
Historical Storm Archive historicalstorms.coastalrisk.live

Carolina



Workflow Pipeline

• Timeseries prediction in gauge stations offset data

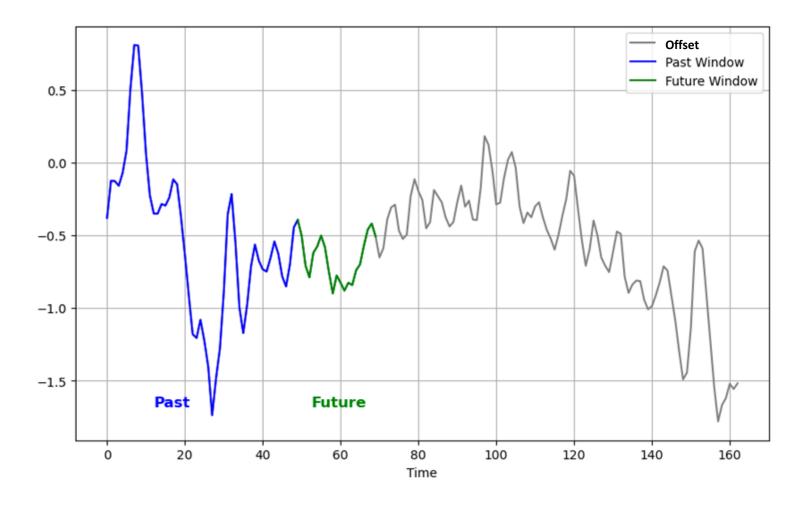


Data Preprocessing

Modelling

Sliding Window Approach

- Past: Past hourly data
- Future: Predicted hourly data



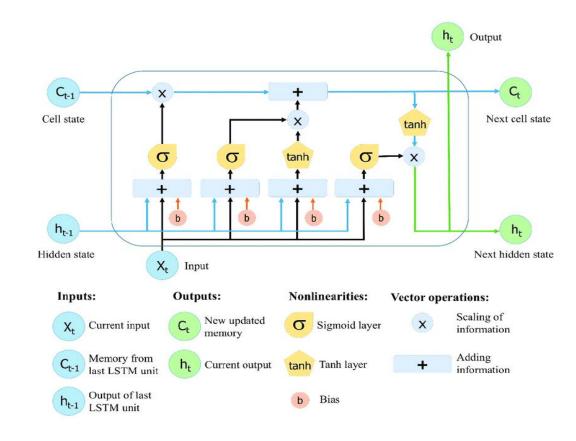
LSTM Based Networks

Type of Recurrent Neural Network (RNN) capable of "understanding" patterns in sequences

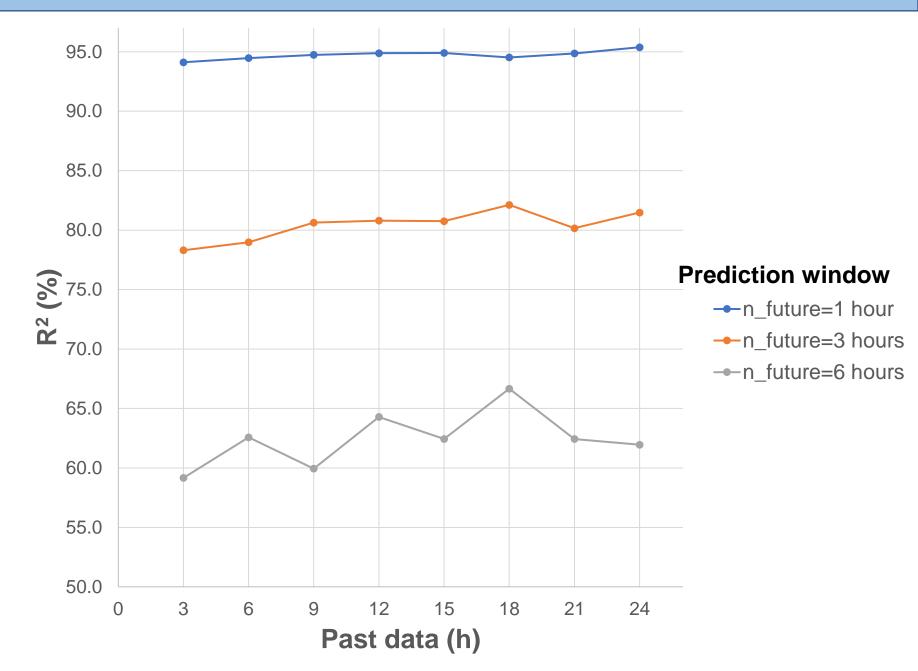
Literature: LSTM used extensively in meteorological studies, i.e. for prediction of timeseries of data such as:

- Flood
- Rainfall
- Wind/wind power
- PM_{2.5} concentration

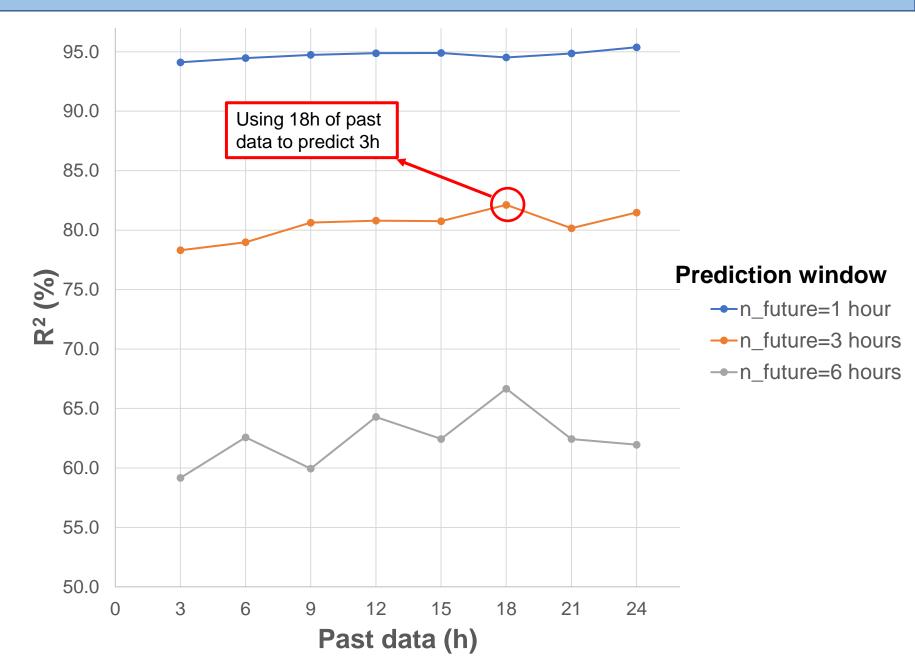
etc.



- Training set: first 75% of timesteps (lan)
- Test set: last 25% of timesteps
 (lan)



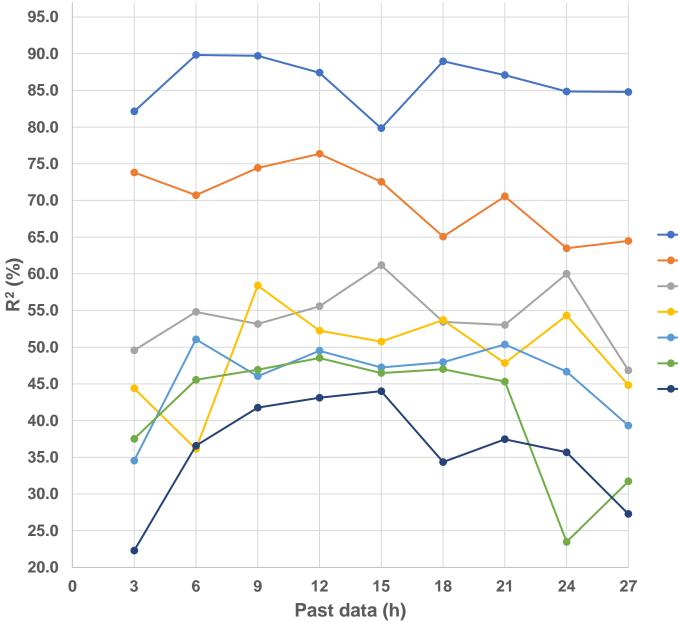
- Training set: first 75% of timesteps (lan)
- Test set: last 25% of timesteps
 (lan)



• Scenario 2

- Training set: Charley dataset (2008)
- Test set: lan dataset (2022)

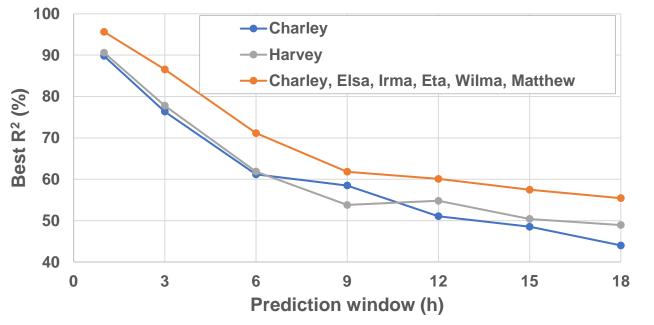
Result: Expected limitations the further we predict into the future



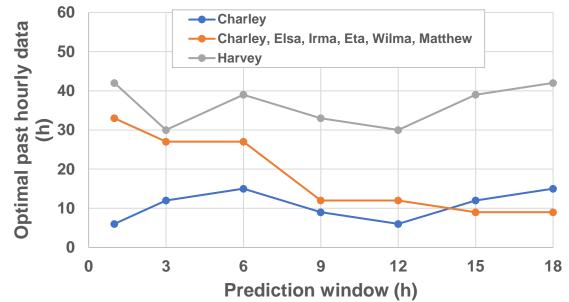
Prediction window (h)

n_future=1 hour
n_future=3 hours
n_future=6 hours
n_future=9 hours
n_future=12 hours
n_future=15 hours
n_future=18 hours

Best performance in different scenarios



No. of past hourly data for best performance



Results:

- Similar performance when using only one hurricane with either similar (Charley) or different (Harvey) characteristics (compared to lan)
- Improvement when using more similar hurricanes

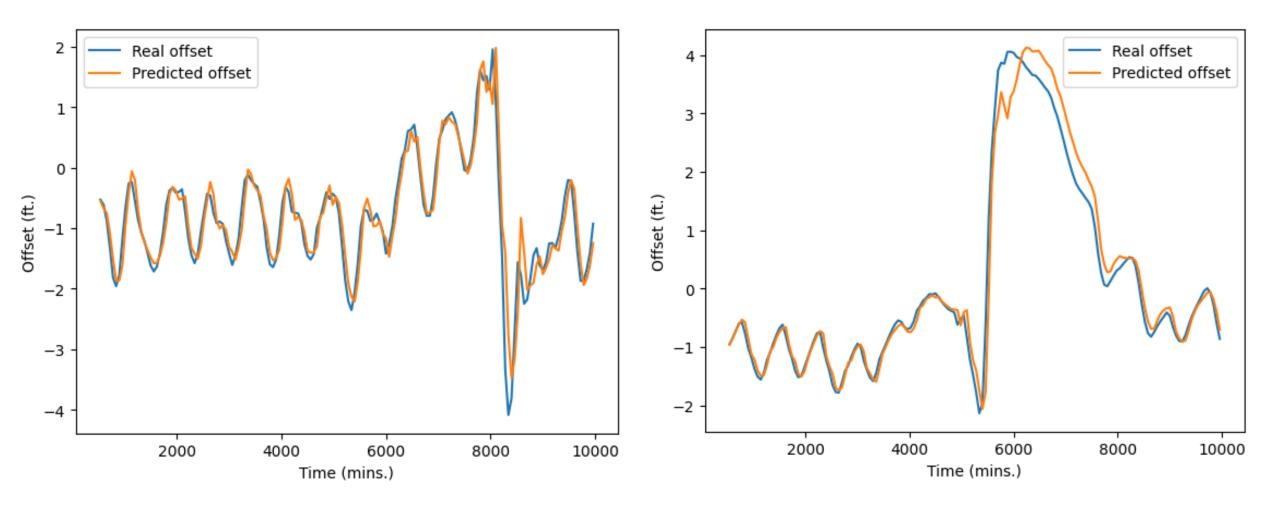
Results:

- More past hourly data needed to achieve optimal performance for a hurricane with different characteristics (Harvey)
- Optimal hourly data decreases with increasing prediction window when using 6 hurricanes

ML Correction on Gauge Stations

Charleston Cooper River Entrance, SC, ID: 8665530, NOAA-NOS

Fort Myers, FL, ID: 8725520, NOAA-NOS



R² score: 87.73%

R² score: 93.15%

Conclusions and Next Steps

Conclusions:

- Predicting offsets at gauge stations shows promising results
- LSTM based ML models are good candidates for this approach
- Noticeable impact of the choice of storms used for training the ML model
- Performance limitations when increasing prediction length
- Can we get ML corrections outside gauge stations?

Next steps:

 Further investigate different ML architectures

- More case studies (different input parameters, more storms to add etc.)
- Extending prediction window for practical use
- Explore appropriate ML models for geospatial extrapolation outside gauge stations

Assessing the systemic error of storm surge model predictions by using LSTM neural networks

Publication (under preparation):

LSTM based machine learning for bias correction of storm surge modelling

S. Giaremis, N. Nader, H. Kaiser, C. Kaiser, S. Nikidis

Our team:

Hartmut Kaiser Head of STE | AR GROUP, Research Professor, LSU-CCT

Carola Kaiser Team Lead of the CERA Storm Surge and Flood Web Mapping Visualization Tool-LSU

Noujoud Nader ML Research Scientist, LSU-CCT

Stefanos Giaremis Research Scientist, LSU-CCT

Efstratios Nikidis Research Scientist, LSU-CCT

CERA - Coastal Emergency Risks Assessment

