

On the implementation of a global wave ensemble of the model MFWAM at short time range : impact of two wave physics for extreme events 04/10/2023

Alice Dalphinet, Lotfi Aouf, Komlan Kpogo-Nuwoklo, Christophe Bataille Météo-France Marine forecasting and oceanography division

3RD INTERNATIONAL WORKSHOP ON

Waves, Storm Surges, and Coastal Hazards

Motivation

 Météo-France operates its own atmospheric ensemble system since 2004, named PEARP

Descamps, L. & all (2015). PEARP, the Météo-France short-range ensemble prediction system. Quarterly Journal of the Royal Meteorological Society.

 Stretched spatial resolution up to 0,08°, 35 members using 2 convection schemes, 4 runs / day, up to +4 days.

=> implementation of a global wave ensemble system using
this atmospheric ensemble forcing
=> produce bounding conditions for a future coastal wave
ensemble system

Main objective to improve waves and coastal flooding warning

Global wave ensemble system MFWAM PEARP

Some general characteristics

Impact of two wave physics on the ensemble

Case study on Mediterranean Sea

Global wave ensemble system MFWAM PEARP

- Run in operations since november 2022
- Resolution of 0,2° like global deterministic MFWAM Arpege.
- Like EPSWAM, we use the same initial conditions.
 => underdispersion in the first 36 hours

Wind at 10 m(m/s) from PEARP

Run of 27/01/2021 0h UTC at the Brittany buoy (north-east Atlantic) **Observation Déterministic**

SWH (m) MFWAM PEARP

Dispersion of the significant wave height

- Mean standard deviation at +102h between the 35 members from January to April 2021
- The waves variability depends on the wind variability and the size of the basin
- The relative variability on french Mediterranean coast is higher than on french Atlantic coast

Ø METEO

FRANCE

Global wave ensemble system MFWAM PEARP

Some general characteristics

Impact of two wave physics on the ensemble

Case study on Mediterranean Sea

Impact of using 2 physics for the wave model

 A) Current physic in deterministic configurations of MFWAM : waves dissipation depending on energie saturation or contrary wind (ST4 like) => better modeling for swell

Ardhuin et al. 2010

 B) Previous physic of ECWAM (before 2019) : waves dissipation depending on their mean steepness (ST3 like) => better representation for wind sea

Bidlot et al, 2007

1PHY	2PHY	EC-ENS
All members with A	- 18 members with A - 17 membres with B	Wave ensemble system from ECMWF

• Comparison of the 3 models on the period January to April 2021

Validation

3 buoys

Quite poor population (around 4000 values / buoy for all time steps)

 Altimetric data over 2 areas, Atlantic et Mediterranean.

6 altimeters available on the period

460 000 values on Atlantic area for all time steps

Example of coverage of the 6 altimeters on a week in april 2021

Underdispersion up to 60h in Atlantic

Rank histogram : position of the observation among the sorted members

 Underdispersion for all models up to 60h

- No difference between 1PHY and 2PHY. Both overestimate the wave height.
- EC-ENS has a weak bias, but lacks more of dispersion than 1PHY/2PHY

Underdispersion up to 48h in Mediterranean

Rank histogram : position of the observation among the sorted members

 Underdispersion for all models up to 48h

- No difference between 1PHY and 2PHY. Both overestimate the wave height.
- EC-ENS is also biased, and lacks a bit more of dispersion than 1PHY/2PHY

- Utility of ensemble forecast compared to deterministic
- better score of 2PHY than 1PHY up to 48h
- Very good score of EC-ENS, especially from 60h

- Utility of ensemble forecast compared to deterministic
- better score of 2PHY than 1PHY particularly at 48h
- Better score of MFWAM PE before 48h, then EC-ENS has lower error.

BSS in ATL for SWH > 5 m

Brier Skill Score

- Good performance of EC-ENS
- Better score of 2PHY than 1PHY for the event SWH > 5 m (Q90) and SWH > 1,27 m (median – not shown).

Ø METEO

FRANCE

BSS in MED for SWH > 3 m

Brier Skill Score

- MFWAM PE has better score before 60h, then EC-ENS has better performance
- Better score of 2PHY than 1PHY for the event SWH > 3 m (Q90) near 48h.

Comparison of the configurations

- Better average score of 2PHY than 1PHY at 1 and 2 days of time range on Atlantic
- Better score of high values with 2PHY (ATL, MED)
- Choice of 2PHY for the operational configuration
- EC-ENS shows very good performance, especially on Atlantic. Advantage to have 50 members.

MFWAM PEARP takes advantage for the Mediterranean Sea at short range (before 48h).

Global wave ensemble system MFWAM PEARP

• Some general characteristics

• Impact of two wave physics on the ensemble

• Case study on Mediterranean Sea

Case of strong local wind in the Mediterranean Sea

16/03/21 at 9h UTC SWH of MFWAM in colors Wind of ECWMF Track of Sentinel 3

La Revellata buoy

Extraction from https://ovl.oceandatalab.com

- 30 knots wind speed oscillating from north to west during several days. Short and changing fetch with a steady strong wind. The buoy La Revellata is a the edge of the phenomenon.
- What was the predictability of this event ? With the deterministic model and the ensemble systems ?

Forecast of the 13/03 00h at the buoy

- Deterministic model underestimate the wave height 2 days and 4 days before. MFWAM PEARP warns that there is a risk of higher wave.
- 2PHY is slightly better than 1PHY for both days.
- MFWAM PEARP is more accurate for this situation. Its dispersion is more elastic than EC-ENS and gives an information about the incertainty

Boxplot of SWH (m) at La Revellata for the runs of the 13/03/21 Deterministic model (dashed) **Observation (plain) 1PHY 2PHY EC-ENS**

Forecast at 36 hours the 13/03

date

Conclusion

- Use of two wave physics in our global wave ensemble system. We get better result on short range and in general with high wave.
- The configuration is running at operations.
 There is a great need for the forecasters to get familiar with it.
- Ensemble wave system from ECMWF shows very good skill for Atlantic.
- MFWAM PEARP appears to be particularly interesting in the Mediterranean, which is known for its strong local wind.

=> interest to use both ensemble system

=> motivation to get into smaller scale with a coastal configuration on french coast forced by PEARP or PEAROME (0,025°)

Other perspectives

- Validation on a longer period
- Test of MFWAM forced by ensemble wind of ECMWF
- Production of Extreme Forecast Index (EFI)
- Use of the dispersion between members to improve assimilation
- Ensemble assimilation

Standard deviation of model errors on SWH at 102h of time step

Thank you for your attention

