

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards 1-6/Oct/2023

Tidal oscillations (meteo-tsunami) generated by Tonga volcano eruption

Nadao Kohno¹⁾, Hiroaki Tsushima¹⁾, Yutaka Hayashi¹⁾, and Mikhail Entel²⁾

¹⁾ Meteorological Research Institute, JMA

²⁾ Bureau of Meteorology

nkohno@mri-jma.go.jp, nkono@met.kishou.go.jp

Introduction

- Volcanic eruption and unexpected tsunamis
- Tide and pressure observations
- ≻Meteotsunamis
- Observed air pressures
- Simulation of tidal oscillations

•Summary

- Introduction
 - Volcanic eruption and unexpected tsunamis
 Tide and pressure observations
 Meteotsunamis
- •Observed air pressures
- Simulation of tidal oscillations

•Summary

Volcanic eruption

- Volcano: Hunga Tonga-Hunga Ha'apai (a submarine volcano)
- Time of occurrence: 13:15 JST (04:15UTC) on 15 January 2022
- Volcanic Explosivity Index (VEI): 5
- Volcanic plume height : 52,000 feet (16,000 m)

Hunga Tonga-Hunga Ha'apai

Water vapor images by Geostationary Meteorological Satellite Himawari (Meteorological Satellite Center, JMA)

Tide observations in Japan

気象庁報道発表資料(2022年1月16日)より

Oscillation happened around 21:00 JST
 (2 hours earlier than expected arrival times)

✓ Large amplitudes were observed in 23:00 JST (Bonin Is.) ~ 24:00 JST (main Is.)
 (Much larger than estimated amplitudes)

Tide observations in South pacific

- Amplitude at Nuku'alofa (Tonga) was at most 1m.
- No tidal oscillation was observed at Nauru and Kiribati.

Observed pressure changes

- Sudden pressure changes were observed in many stations in Japan and south Pacific
- The changes are associated by the eruption
- The pressure differences are \pm 5~10hPain south Pacific and around 2hPa in Japan

Fiji (Suva)

Tuvalu (Funafuti)

Nauru

Kiribati (Betio)

Stations in Japan

Meteotsunamis

IOC glossary 2019: Meteorological tsunami (meteotsunami)

<u>Tsunami-like phenomena generated by meteorological or atmospheric disturbances</u>. These waves can be produced by atmospheric gravity waves, pressure jumps, frontal passages, squalls, gales, typhoons, hurricanes and other atmospheric sources. <u>Meteotsunamis have the same temporal and spatial scales as tsunami waves and can similarly devastate coastal areas, especially in bays and inlets with strong amplification and well-defined resonant properties.</u>

Main mechanism: Proudman resonance (Proudman, 1929)

Moving pressure disturbances generate shallow water gravity waves in ocean. The amplifying factor R becomes large when moving speed pf pressures is near to the phase speed of the ocean gravity $||_{\mathcal{A}} | |_{\mathcal{A}}$

$$R = \frac{1}{1 - \left(\frac{V}{c}\right)^{2}} = \frac{1}{1 - \frac{V^{2}}{gh}}$$

V: moving speed of pressure waves, $c=\sqrt{gh}$: phase speed of shallow water waves (*g*: gravitational acceleration, *h*: water depth)

- ✓ Dynamically amplified, unlike storm surges
- ✓ Other effects like Green's law may be included, same as usually tsunamis.

Phase speeds of shallow water waves

Phase speeds(m/s) of shallow water gravity waves calculated from water depth. (depth data: NGDC ETOPO2v2)

Possibility of resonance

The ratio of moving speed of pressures and phase speed of shallowwater gravity waves (Froude number).

The preferable condition for Proudman resonance in the Pacific is <u>Moving speeds of pressure are 160~300m/s</u>

10

Introduction

- Volcanic eruption and unexpected tsunamis
- Tide and pressure observations
- ≻Meteo-tsunamis
- Observed air pressures
- Simulation of tidal oscillations

•Summary

Observed pressures in Japan

Observed time of the peaks

• Surface pressures

Marcus 1017.5hPa (18:40) 1015.9hPa (19:00) Bonin 1022.0hPa (19:40) 1020.1hPa (19:50) Tokyo 1022.0hPa (20:30) 1020.1hPa (20:40) Murotomisaki 1023.2hPa (20:40) 1021.3hPa (20:50) Minami-Daito 1023.5hPa (20:10) 1022.7hPa (20:30) Naze 1023.9hPa (20:30) 1022.6hPa (20:50) Miyako 1021.1hPa (20:40) 1018.9hPa (21:00) **Kushiro** 1016.1hPa (20:50) 1014.2hPa (21:00)

Observed pressures in south Pacific

Moving speed of the atmospheric pressures

- Measuring moving speed from observed pressures
 - The time of eruption is known(13:15JST on 15 Jan.), but the exact time of pressure wave generation is not clear (The time of eruption can not be used as the start.)
 - > The location (20.55S, 175.385W), and the observation points and times are certain.
 - \Rightarrow Moving speed can be estimated from the distance from the eruption and time of observations.

- Moving speeds are can be regarded as constants (R>0.99).
- ✓ Moving speed of P0, pmax, Pmin are 310m/s, 307m/s, 304m/s, respectively
- ✓ Initial time (y0) could be 13:07 ~ 13:45

Change of pressure values

P+: positive values, P-: negative values dp: the maximum difference (= P+ - P-)

- ✓ Amplitudes become smaller as distance longer
- Negative values are hard to measure due to complicated shapes and may have large errors.
- Pressure changes can be expressed as logarithmic functions

t+: duration of positive values,t-: duration of negative values

- ✓ Duration of t+ is almost constant
- Duration of t- becomes large in time (can be expressed by a linear regression
- Negative values over 7000km are excluded (too small to detect)

Introduction

- Volcanic eruption and unexpected tsunamis
- Tide and pressure observations
- ≻Meteotsunamis
- Observed air pressures
- Simulation of tidal oscillations

Summary

Setting of numerical simulations

- Model: 2-dimensional shallow water model on spherical coordinate
- Area: -60.0 66.0 (Latitude), 100.0 300.0 (Longitude)
- Resolution: 2 minutes (3.7 km)
- Bottom friction: Manning's roughness coefficient (0.025), water depth ^{7/3}
- Initial condition: static state
- Calculation: 24 hours
- Forcing: Symmetric pressure disturbance
 - Moving speed: 305 m/s
 - Anomaly: logarismically decreasing

Blue \rightarrow red

Simulation results

2022/01/15 13:15

Comparison at coastal points

Pressures (left) and tides(right)

Red: observation Blue: calculation

- Pressures (forcing) in the calculation is basically same
- Timing of tidal oscillation looks the same in all points
- Amplitudes of tides are large in south Pacific and small in Japan

Comparison in open ocean (vs DART buoy)

Timing and amplitudes in offshore points are fairly compared, although overestimation are seen near the eruption point.

20

Introduction

- Volcanic eruption and unexpected tsunamis
- Tide and pressure observations
- ≻Meteotsunamis
- Observed air pressures
- Simulation of tidal oscillations

Summary

Summary

- The oscillations happened in almost whole Pacific (not a local phenomenon)
- In Japan, the oscillation started a few hours earlier, and unexpectedly large amplitudes were observed.
- Atmospheric pressure waves associated with the eruption were observed in Pacific.
 - ✓ The moving speed of the pressure, estimated from observations is 305 m/s, which is slightly larger than preferable values for Proudman resonance.
 - ✓ Some small pressure fluctuations are seen after that (suitable for the resonance but the amplitudes are very small)
- Simulation with imitated pressure observation was conducted.
 ✓ Simulated results looks basically reasonable in characteristics
 ✓ the timing of tidal oscillation looks same as observation.
 ✓ Amplitudes are similar to observed values in offshore, but underestimations were seen in Japanese coasts.
- The tidal oscillation, especially the first one, can be a kind of meteotsunamis associated by moving pressure waves by the volcanic eruption.

Thank You for attention!

The JMA Mascot "Harerun" (The word "hare" means fine weather in Japanese.)

XA part of this work was supported by JSPS KAKENHI Grant Number JP21K21353.