

COASTAL Act funding from National Oceanic and Atmospheric Administration (NOAA) through Virginia Institute of Marine Science (VIMS)

Quantifying and Reducing Uncertainty in Hurricane-driven Coastal Flooding Hindcast Simulations

WILLIAM PRINGLE GEETA NAIN

Environmental Science Division Argonne National Laboratory SOROOSH MANI SAEED MOGHIMI EDWARD MYERS

KHACHIK SARGSYAN

VIRGINIA INSTITUTE OF MARINE SCIENCE

JOSEPH ZHANG

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Project Aims

Exploratory Work

- Probabilistic representation of storm tide and inundation predictions.
- Model parameter constraints and uncertainty for hindcasts.

Problem to Solve

- To do this even with computationally costly models that restrict size of ensemble in operational setting
 - Surge + tides (+ wind waves) on high-resolution meshes

HURRICANE STORM TIDE UQ METHODOLOGY

U.S. DEPARTMENT OF ENERGY U.S. Department of Energy laboratory managed by U/Chicago Argonne U.C. managed by UChicago Argonne, LLC.

Outline of Methodology

- Perturb parameters of forecasted tropical cyclone (e.g., trajectory, intensity, and size) in a realistic and efficient way.
- 2) Simulate coastal flooding in the landfall region of ensemble perturbation from 1) using hydrodynamic model.
- Perform probabilistic analysis / uncertainty quantification
 (UQ) of water levels / flood-depth for the affected regions, providing useful outputs
 - Hindcast: sensitivity and uncertainty maps
 - Forecast: sensitivity, exceedance water levels/probability maps

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

1) HURRICANE PERTURBATION

36°N

32°N

28°N

24°N 85°W

https://github.com/noaa-ocsmodeling/EnsemblePerturbation

4 variables perturbed based on historical forecast errors Following similar method to P-Surge

- a) Cross-track [normal]
 - offset forecast location by perpendicular distance
- b) Along-track [normal]
 - offset forecast location up/down the track
- c) Storm intensity [normal]
 - Vmax: maximum wind speed (central pressure also adjusted accordingly)
- d) Storm size [uniform]
 - Rmax: radius of maximum wind speed
 - r34, 50, 64-kt radii for Generalized Asymmetric Holland Model (GAHM) parametric vortex

1) FORECAST ERROR TABLES

https://github.com/noaa-ocsmodeling/EnsemblePerturbation

TABLE	A1.	Mean	absolute	forecast	error:	cross	track	(n	mi).
VT = forecast validation time.									

	Initial V_{max} (VT = 0)			
VT (h)	<50 kt	50–95 kt	>95 kt	
0	4.98	2.89	1.85	
12	16.16	11.58	7.79	
24	23.10	16.83	12.68	
36	28.95	21.10	17.92	
48	38.03	27.76	25.01	
72	56.88	47.51	40.48	
96	92.95	68.61	60.69	
120	119.67	103.45	79.98	

VT (h) <50 50–95 >9	
	5
0 1.45 2.26 2.8	0 Hindcast
12 4.01 5.75 7.9	4
24 6.17 8.54 11.5	3
36 8.42 9.97 13.2	7
48 10.46 11.28 12.6	6
72 14.28 13.11 13.4	1
96 18.26 13.46 13.4	6
120 19.91 12.62 13.5	5

TABLE A3. Mean absolute forecast error: V_{max} (kt).

TABLE A4. Upper- and lower-bound forecast errors: R_{max} (sm); sm = U.S. statute mile.

		Ι	nitial R_{\max} (VT = 0) (sm	ı)		
VT (h)	<15	15–25	25–35	35–45	>45	
	[0.00, 0.00]	[0.00, 0.00]	[0.00, 0.00]	[0.00, 0.00]	[0.00, 0.00]	Linear
12	[-17.15, 2.47]	[-13.29, 5.74]	[-11.26, 10.56]	[-14.82, 18.24]	[-22.40, 25.43]	avtran alation to
24	[-23.55, 2.31]	[-18.16, 9.45]	[-17.93, 13.31]	[-12.13, 21.01]	[-18.04, 34.39]	extrapolation to
36	[-24.90, 4.20]	[-25.18, 9.24]	[-14.88, 17.36]	[-11.19, 24.89]	[-1.08, 43.22]	0-hr for hindcast
48	[-30.57, 3.64]	[-29.75, 9.80]	[-13.36, 18.98]	[-8.47, 31.64]	[8.46, 43.78]	
60	[-37.83, 1.33]	[-27.25, 10.07]	[-13.70, 19.29]	[-6.35, 31.09]	[8.18, 43.14]	
72	[-45.11, -0.99]	[-24.75, 10.35]	[-14.04, 19.60]	[-4.24, 30.54]	[7.93, 42.51]	
96	[-55.26, -3.72]	[-29.71, 13.94]	[-11.43, 19.67]	[0.37, 30.46]	[2.49, 38.55]	
120	[-61.26, -9.56]	[-35.46, 11.77]	[-11.71, 19.62]	[-0.84, 32.59]	[3.19, 40.56]	

Argonne National Laboratory is a ENERGY U.S. Department of Energy Liboratory managed by UChicago Argonne, LLC.

Probabilistic Prediction and Uncertainty Quantification of Tropical Cyclone-Driven Storm Tides and Inundation." Artificial Intelligence for the Earth Systems 2 (2): e220040. https://doi.org/10.1175/AIES-D-22-0040.1.

1) PERTURBATION – QUASI-MONTE CARLO

Low-discrepancy Korobov sequence

59 training pertubation(s) of 4 variable(s)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Sampling has a determined structure

- 96.7% of distribution with 59 members
- 95% of distribution with 39 members
- 90% of distribution with 19 members

2) STORM TIDE SIMULATION Resolution of HSOFS₂₀₁₆

ADCIRC

- → ADCIRC v55 2D hydrodynamics
- → Astronomical tides
- → Built-in Holland 1980, CLE15, and GAHM vortex models

SCHISM

- → SCHISM in 2D mode
- → Astronomical tides
- → Coupled with Parametric Hurricane Modeling System (<u>PaHM</u>) using GAHM vortex model

Open-source python libraries

- <u>CoupledModelDriver</u> handles [coupled] model setup (generates input files)
- → EnsemblePerturbation generates multiple instances of model setup Argonne ▲ 75

2) PARAMETRIC HURRICANE VORTEX MODELS

200

-200 x (nm '

-200

-400

y(nm)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Irene 2011-08-25 00:00:00

0

-200 x (nm)

200

Argonne 合 🛛 🎜 🖯

-200

-400

v(nm)

2) PARAMETRIC HURRICANE VORTEX MODELS

CLE15 merges theoretical models for inner and outer regions

Inner:

Emanuel, Kerry, and Richard Rotunno. 2011. "Self-Stratification of Tropical Cyclone Outflow. Part I: Implications for Storm Structure." *Journal of the Atmospheric Sciences* 68 (10): 2236–49. <u>https://doi.org/10.1175/JAS-D-10-05024.1</u>.

Outer:

Emanuel, K. (2004). Tropical cyclone energetics and structure. In E. Fedorovich, R. Rotunno, & B. Stevens (Eds.), Atmospheric Turbulence and Mesoscale Meteorology: Scientific Research Inspired by Doug Lilly (pp. 165-192). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511735035.010

Background winds as function of forward speed, *Vs*

3) UQ ANALYSIS METHOD

- 1. Find an approximation of input-output map: **the surrogate**
 - Polynomial Chaos (PC), or

$$U \simeq \sum_{k=0}^{K} u_k \Psi_k(\boldsymbol{\xi})$$

$$Z = f(U) \simeq \sum_{k=0}^{K} c_k \Psi_k(\boldsymbol{\xi})$$

x

Input PC

Output PC

Neural Network (NN)

on a reduced dimension space (PCA)

2. Compute sensitivity indices (GSA)

Main Effect Sobol Index $S_i = \frac{Var[\mathbb{E}(Z(\boldsymbol{\xi}|\xi_i)]}{Var[Z(\boldsymbol{\xi})]}$

3. Build CDF of PC to get the **exceedance probabilities/heights**

RESULTS: HURRICANE FLORENCE 2018

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

40

32

24 Mind speed [m/s]

8

PARAMETRIC **VORTEX MODEL COMPARISON** - WIND SPEEDS

BEST-TRACK PERTURBATION - 19 ENSEMBLES

V_{max} [kt]

0.500

0.389

0.278

0.167

0.056

eevation [m]

-0.167

-0.278

-0.389

-0.500

HIGH-WATER MARK COMPARISONS - ENSEMBLE MEAN **IMPROVES STATS**

[PRIOR] GEOSPATIAL UNCERTAINTY

Similar patterns between all models, GAHM less uncertain than Holland & CLE15 as more constrained by r34/r50/r64

BAYESION INFERENCE TO CONSTRAIN INPUT AND OUTPUT DISTRIBUTION

U.S. DEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

CLE15

Markov Chain

PDF

HIGH-WATER MARK COMPARISONS - POSTERIOR RANGE SMALLER AND REDUCES ERROR

[POSTERIOR] GEOSPATIAL UNCERTAINTY

- GAHM has much smaller uncertainty (MCMC may not have converged correctly)
- CLE15 has the most but reduced to less than 0.15 m

ORIGINAL BEST-TRACK AND MAXIMUM A POSTERIORI PREDICTION COMPARISON - WATER LEVELS [CLE15]

Main effect is to increase storm size as most sensitive parameter

Summary

- 1) Dimensionally-reduced NN surrogate model trained on qMC model ensemble with cross-validation technique
- 2) Sensitivities and uncertainty computed from surrogate model
- 3) Observations used to constrain the likely ensemble range and update input TC error parameters through MCMC
- For Florence, CLE15 produces smallest errors, most sensitive to Rmax. Uncertainty up to 0.5 m a priori, reduced to <0.15 m with HWM constraints. Suggests a larger Rmax with track to left.

Ongoing/Future work:

- Test more storms
- Alternative method(s) for Rmax/r34/r50/r64 perturbation
- Perturbing hydrodynamic model parameters e.g., bottom friction

