Title: Monitoring the motion of the land-fast ice in Lützow-Holm bay, Antarctica

*T. Waseda¹, K. Tateyama², R. Uchiyama¹, T. Nose¹, T. Kodaira¹, T. Katsuno¹, T. Tamura³, T. Toyota⁴, J. Rebault⁵, M. Hoppmann⁶, D. Shimizu³

¹The University of Tokyo, ²Kitami Institute of Technology, ³National Institute of Polar Research, ⁴Hokkaido University, ⁵Met. Norway, ⁶Alfred-Wegener-Institut

APPLIED PHYSICAL OCEANOGRAPHY

Syowa station & Japanese Antarctic Research Expedition (JARE)

Syowa station

Located on East Ongul Island in Lützow-Holm bay

D Built-in 1957

JARE

□ 64 expeditions since 1957 (JARE1 to JARE64)

Shirase

Icebreaker, 20,000t, L138m, B28m, D9.2m

Capable of continuous ice-breaking up to 1.5 m ice thickness

D Ramming ice breaking over 2.0 m total ice thickness

The Southern Ocean sea ice conditions

Mean SIC in austral summer months during Shirase outbound (to Syowa) (Dec) and homebound (Feb) legs.

JARE61 2019-20

Shirase's ship route and Sea Ice Concentration (AMSR2) since JARE 51

Sea ice condition changes year by year. The difficulty of navigating through the ice changes accordingly. Particularly the JARE53 & 54

Ishiyama, bachelor's thesis 2023, UTokyo

Motivation: Consequence of a failure to berth close enough to Syowa station

Ishiyama, bachelor's thesis 2023, UTokyo

Inter-annual variability of the number of ramming maneuver

ラミング回数の変遷

2016 Fast ice break-up in Lützow-holm bay

Possible cause of inter-annual variability

<u>Snow-ice hypothesis (Ushio & Toyota)</u>: As the ratio of the snow-ice increases, the sea ice loses its material strength and becomes easier for the propagating swells to break the ice.

Optimum routing for Shirase and the mechanism of MIZ, PIZ, and fast-ice variability

JARE64 – 69 (Xth term of JARE) (PI: Waseda)

- The objective is to monitor the waves propagating into the sea ice and to monitor the motion of the sea ice.
- The Marginal Ice Zone and the Packed Ice Zone prevent the waves to propagate into the fast ice.
 - Propagation and attenuation of waves in the MIZ and PIZ
- □ The breakup of fast ice
 - Causes: wind, current, and wave
 - Fracture vs. fatigue
- □ Long-term trend: climate variation, storm

In-house buoys: Kodaira, T., et al.. OCEANS 2022, CEJ (2023) Rabault, J., et al. Sci. Data 10, 251 (2023) Nose, T. (2023). Polar Research, CEJ

JARE64: Waseda, Tateyama, Uchiyama

Key technology: Sensor development – a community effort

Article

OpenMetBuoy-v2021: An Easy-to-Build, Affordable, Customizable, <u>Open-Source</u> Instrument for Oceanographic Measurements of Drift and Waves in Sea Ice and the **Open Ocean**

Jean Rabault ^{1,*}, Takehiko Nose², Gaute Hope ¹, Malte Müller ^{1,3}, Øyvind Breivik ¹, Joey Voermans ⁴, Lars Robert Hole ¹, Patrik Bohlinger ¹, Takuji Waseda ^{2,5}, Tsubasa Kodaira ², Tomotaka Katsuno ², Mark Johnson⁶, Graig Sutherland⁷, Malin Johansson⁸, Kai Haakon Christensen¹, Adam Garbo⁹, Atle Jensen ³, Olav Gundersen ³, Aleksey Marchenko ¹⁰, and Alexander Babanin ⁴

> Table 2. A representative list of components needed to build an instrument monitoring drift (GNSS) and wave activity (9-dof sensor). The assembly time for a single instrument, when assembling a series of 10 instruments in bulk, is about 0.5 h once the user is familiar with the design.

Component	Function	Price (USD)	Assembly Steps	
Artemis Global Tracker	main board, MCU, GNSS, Iridium	375	ready to use	
GNSS + Iridium antenna	passive antenna	65	screw on SMA cable	
SMA extension cable 25 cm	extension cable for antenna	5	screw on tracker	
Qwiic power switch	power on and off 9-dof	7	disable LED, connect 9-dof and tracker	
ISM330DĤCX + LIS3MDL	9-dof sensor	18	connect to power switch	
Qwiic cables $(x2)$	connect tracker, 9-dof, switch	3	connect power switch and 9-dof	
3.3V Regulator S7V8F3	3.3 V buck converter	10	solder to battery and tracker	
$2 \times D$ cell holders	house and connect batteries	15	solder to 3.3 V regulator	
$2 \times SAFT LSH20$	power supply	35	put in cell holders	
reed MDRR-DT-20-35-F	magnetic switch	3	solder between battery and regulator	
magnet	turn magnetic switch on/off	1	mount outside housing	
housing box	housing, IP68	20	mount the electronics inside	
misc: glue, wire	small extras	5	get the design assembled	
total	fully functional instrument	562	0.5 h/instruments, producing 10	

Takachi box.

Figure 6. Zeni-v2021 and SPOT-1386 deployment location on 15 September 2021. The 2021 NA-BOS observation locations also shown in green markers and AMSR2-derived 0.15 and 0.80 Sea Ice Concentration (SIC) contours for the same day are overlaid.

Comparison against commercial product (Spotter)

Findings from the NABOS 2021 cruise and data release

Resolving thin ice; a crucial factor in waves in polar region

scientific data

Check for update

OPEN A dataset of direct observations of DATA DESCRIPTOR sea ice drift and waves in ice

Jean Rabault[®]¹[™], Malte Müller[®]^{2,3}, Joey Voermans⁴, Dmitry Brazhnikov⁵, Ian Turnbull⁶, Aleksey Marchenko⁷, Martin Biuw⁸, Takehiko Nose⁹, Takuji Waseda^{9,10}, Malin Johansson[®]¹¹, Øyvind Breivik^{12,13}, Graig Sutherland¹⁴, Lars Robert Hole¹², Mark Johnson⁵, Atle Jensen¹⁵, Olav Gundersen¹⁵, Yngve Kristoffersen¹⁶, Alexander Babanin[®]⁴, Paulina Tedesco[®]^{1,17}, Kai Haakon Christensen[®]^{2,3}, Martin Kristiansen⁸, Gaute Hope¹², Tsubasa Kodaira⁹, Victor de Aguiar¹¹, Catherine Taelman¹¹, Cornelius P. Quigley¹¹, Kirill Filchuk¹⁸ & Andrew R Mahoney¹⁹

Deployment time	location	ice conditions	number & kind of instrument
2017-04	Arctic, Barents Sea, 76.4 N 22.5E	drift ice: 8/10 to 0/10	GPS drifter: 8
2018-03a	Arctic, East Greenland Sea, 73.5 N 15.5E	drift ice: 6/10 to 10/10	GPS drifter: 5
2018-03b	Arctic, Beaufort Sea, 72.3 N 148.4 W	pack ice: 8/10 to 10/10	IWR: 2
2018-04	Arctic, Barents Sea, 75.3 N 19.5E	drift ice: 8/10 to 0/10	GPS drifter: 1
2018-09	Arctic, Barents Sea, 82 N 20E	MIZ: 1/10 to 10/10	v2018: 4
2020-01	Antarctic, outside Davis station, 69 S 76E	landfast ice (breakup)	v2018: 2 + Sofar Spotter: 2
2020-03a	Arctic, Grønfjorden, Svalbard, 78 N 14E	landfast ice (intact)	v2018: 3
2020-03b	Arctic, Beaufort Sea, 71.2 N 141.5 W	pack ice: 8/10 to 10/10	IWR: 2
2020-07	Arctic, Yermak Plateau, Barents Sea, 82 N 15E	MIZ: 3/10 to 10/10	v2018: 6
2020-11	Antarctic, outside Casey station, 66 S 110E	landfast ice (intact)	v2018: 2
2021-02	Arctic, Barents Sea, east Svalbard, 77 N 30E	MIZ: 5/10 to 10/10	v2018: 6+v2021: 11 (6 with waves)
2021-03	Arctic, Beaufort Sea, 71.5 N 148WE	pack ice: 7/10 to 10/10	IWR: 3
2021-04	Arctic, Utqiagvik, 71.3 N 156.6 W	landfast ice	IWR: 6
2021-09	Arctic, Laptev Sea, 82 N 118E	MIZ: 1/10 to 10/10	v2021: 1 + Sofar Spotter: 1
2022-03	Arctic, East Greenland sea, 70 N 20E	MIZ: 2/10 to 10/10	v2021: 2 + commercial beacon: 5
total nbr tracks			total: 72; with waves: 48

 Table 2.
 Overview of the deployments, their locations and time spans, the sea ice conditions, and the kind and number of instruments deployed.

Nose et al. 2023 Polar Research: model fails to represent a wave event.

Waves propagating under ice for a 1000 km (JARE63)

Figure 2.: Medusa-766 trajectory between 4 Feb 2022 and 3 Jan 2023 overlaid on the ADS-AMSR2 SIC on 1 Feb (top) and 1 Aug (bottom) 2022. The brown line is the trajectory, and the brown marker shows its location on the respective dates. SICs are shown in colours. The 1 Feb panel also has Sentinel-1 SAR images overlaid.

Frequency (Hz)

Prototyping the buoys

Drifters: 3D printing + wave sensor (FZ) FZ XFZ XFZ XFZ-V2

42cm (16.4m)

09/08

09/08

09/08

09/09

09/09

09/09

09/10

09/10

09/10

09/11

09/11

09/11

09/12

09/12

09/12

09/13

09/13

09/13

Buoy on ice: JARE63, 64

New design for JARE65

- SPOT1730

SPOT1803XFZ36

- SPOT1732

- XFZ02

---- ERA5

XFZ28

ERA5

ERA5

JARE64: Buoy deployment on ice from Shirase (Feb. 14, 2023)

JARE64: 15 buoy deployments on Fast-ice (Dec. 26, 2022)

JARE64: Landing on ice: Measuring ice thickness (Feb.7, 2023)

撮影内山

The motion of the buoys from Dec. 26, 2022 to May 2023

Dec. 26: 15 buoys deployed on fast-ice

Jan. 3: landed on ice to measure ice thickness

Feb. 7: landed on ice to measure ice thickness

Feb. 11: 6 buoys deployed on drift-ice

Feb. 12 to Feb. 15 deployed 10 buoys from Shirase

Yellow disk: current location of the buoy Yellow circle: initial location of the buoy Orange line: the trajectory of the buoy Yellow line: a day-long trajectory of the buoy

Waves detected by the buoys $H_{S(m)}$

Red marks indicate when the buoy started to drift.

Incoming wave field (ERA5: Significant height of combined wind waves and swell, mean wave direction, mean wave period)

Red vertical lines indicate when the buoy started to drift.

Represents where the wind speeds are sampled.

Trigger of the breakup is the swell propagating into the fast-ice – *the wind is from the south*

Summary JARE64 observations:

- 23 wave buoys were successfully deployed on the fast-ice and the drift-ice in the Lützow-Holm bay during the JARE64.
- The ice thicknesses of the fast-ice were measured at 13 locations near the deployed buoys.

Fast-ice breakup in 2023:

- In March, the fast-ice started to breakup and the breakup continued until the beginning of May when all the buoys drifted out of the bay.
- 3/30 event was triggered by an incoming wave from the WNW.
- The buoys started to drift when the wind changed to southerly
- Causes of the breakup
 - The analysis of the buoy motion reveals that the combined effect of wave and wind is the precursor to the drift but the direct cause of the breakup and drift may depend on each event.
 - There is also a signature of semi-periodic oscillation of the sea-ice likely due to an <u>ocean current field</u>, which possibly relates to a fatigue.

Beginning of the end? 2023 recorded the lowest sea ice extent. Can the multi-year ice in the Lutzow-Holm bay disappear?

National Snow and Ice Data Center, Boulder, CO

Sea Ice Extent, 29 Sep 2023

Red vertical lines indicate when the buoy started to drift.

Represent where the wind speeds are sampled.

Breakup events are indicated by vertical lines.

Impact of ocean current

仮説:静振 Seiche

$$L(湾の長さ) = \lambda(波長), \frac{\lambda(波長)}{2}, \frac{\lambda(波長)}{4}$$

 $\lambda(波長) = \sqrt{gH}(位相速度) \times T(時間)$
 $H(水深) = 200 \text{ m}$
 $\sqrt{gH}(位相速度) = 44.3 \text{ m/s}$

	T (hours)	λ (km)	λ/2 (km)	λ/4 (km)
南北	5.56	886	443	222
東西	7.11	1,133	567	n/a
	4.41	702	351	n/a

e.g. Nagano, A., Michida, Y., Odamaki, M., Suzuki, K., & Ogata, J. (2010). Seiches in Lützow-Holm Bay, Antarctica. *Polar science*, *4*(1), 34-41.

→ Observed 3.1 hour topographically constrained mode

Appendix: Detecting buoy drift

