

Impacts of forcing details on wave models using the NCEP global wind wave model setup of WAVEWATCH III ®

Dr. Ir. Hendrik L. Tolman Senior Advisor for Advanced Modeling Systems Office of Science and Technology Integration National Weather Service / NOAA

Hendrik.Tolman@NOAA.gov

Background

Wind is important for wind waves (dah !)

- Bauer et al. (1996), update wind rather than waves for DA
- View from meteorological perspective :
 - Accurate description of mesoscale features
- Competing view points ?
 - Wave height scales quadratic with wind speed
 - Waves as low-pass filter of forcing

 Systematic assessment of impact of wind perturbations should be very insightful

Background (history, scales)

• Gustiness, e.g.,

- Kahma and Calkoen (1992, 1994)
- Abdalla, Cavaleri, Bidlot, Janssen 2002 and 2003
- Resolved scales, e.g.
 - Shuyi Chen et al (2013), high-resolution hurricane work
- Propagating wind perturbations (dynamic fetch), e.g.
 - Tolman & Alves (2005), Xu et al. (2007), Chen et al (2013)
- Perturbing ensembles
 - Spread in wave ensembles is directly related to time scales of perturbation of wind field (not just amplitude) (NCEP)

Experiments

Systematic perturbation study with wind wave model

- WAVEWATCH III, set up as for NCEP global models
- Time limited growth starting with flat surface and $U_{10,b} = 20 \text{ ms}^{-1}$
- Systematically perturbed wind speed

 $U_{10}(t) = U_{10 \ b} \left[1 + \Delta \widehat{U} \sin(2\pi T_{\delta}^{-1} + \phi_0) \right]$

• Gives (systematic ?) wave height perturbation

 $\Delta H_s(t) = H_s(\Delta \widehat{U}, T_{\delta}, \phi_0, t) - H_{s,base}(t)$

• Ideally described with $\Delta H_{s,avg}$ and std σ_H , in principle as f(t)

Before actual experiments

To make sure results are reliable Test convergence / set time steps Test scaling behavior Universal u_{*} scaling for baseline run Two distinct scaling ranges > Not for U_{10} scaling How do you scale with perturbed wind ? Sensitivity to perturbations ► Generally good above $\Delta \hat{U} = 10\%$ Noise introduced due to parametric tail transition skips

A first look

 $\Delta \widehat{U} = 30\%$ and $\phi_0 = 0$, with a large range of T_{δ} • Clear mean impact, clear low pass filtering even for $T_{\delta} = 24h!$

A first look (extended)

Additional observations from the first look:

- Wave height good proxy for most mean parameters (not σ_d or f_p)
- Wind direction variability has small impact
- Air-sea temperature difference has small impact
- Note that drag coefficient reacts near instantaneous, without low pass filter behavior

Td

6 h

2.75

2.5

 C_d

x1000

2.25

a)

A first look (phase averaging)

For each $(\Delta \widehat{U}, T_{\delta})$, 24 ϕ_0 are used

- The amplitude of ΔH_s is $f(\phi_0)$
- This can be removed with running box filter with width T_{δ}
- This is directly related to cumulative effects of nonlinear initial growth
 - Physically sound
 - Not relevant in nature ?

All following results are phase ϕ_0 averaged and filtered as needed

Example with $\Delta U_{10} = 20\%$ and $T_{\delta} = 12h$.

Red, green and grey lines are results with all initial phases Black lines are mean parameters

Evolution in time

Is the impact of perturbations on average a function of t? Variability σ_H is nearly constant over time (0-48h)

Perturbation mean ΔH_{s,avg} is f(t)
Initial growth (3-9h) range vs.
mature growth (24-48h) range

Notre Dame, October 3, 2023

9/18

Low pass filtering

Amplitude of wave perturbation relative to wind perturbation

- σ_H constants in time
- Non-dimensional (u_{*})
- Filter function $\mathcal{F}(T_{\delta})$
- $\mathcal{F}(\infty) \equiv 1$
 - Form from scaling
 - Asymptote defines C
- $\frac{g\sigma_H}{u_*^2} \propto \mathcal{C} \mathcal{F}(T_{\delta}) \Delta \widehat{U}$

Low pass filtering

Low pass filtering dominates scaling behavior

- Extended exp for $T_{\delta} \rightarrow \infty$
- Impact for
 - Error propagation
 - Wind resolution
 - Wave ensembles
 - T_{δ} versus $\Delta \widehat{U}$

Mean change, initial growth

Mean change relative to wind perturbation

- Assume ΔH_s constant for t = 3-9h
- Non-dimensional (u_{*})
- Form from scaling

 $g\Delta H_{s,init}$

- Constant C from experiment
- C asymptotes for $T_{\delta} > 24h$
- C enhancement for T_{δ} < 12h

 $\propto C \Delta \hat{H}^2$

Mean change, initial growth

Constant behavior with enhancement area

- Results for $T_{\delta} \downarrow 0$ like asymptote
 - Consistent with expectation
- Enhanced impact range
 - Nonlinear feedback ?
- Impact for
 - ► Gustiness
 - Scale-aware physics
 - Wind resolution

Mean change, mature growth

Mean change relative to wind perturbation

- Increases for t = 24-48h
- Same formulation as $\Delta H_{s,init}$
- Tail-fit noise less evident
- C asymptote for $T_{\delta} \gg 48h$
- C enhancement for most T_{δ}

 $\frac{g\Delta H_{s,mat}}{u_*^2} \propto \mathcal{C} \Delta \widehat{U}^2$

• Bigger impact than for $\Delta H_{s,init}$

$\Delta H_{s}(t)$, mature growth

Linear growth with time

- Normalized slope b/b₀
- Fit for *t* = 24-48h
 - $\blacktriangleright \Delta H_s = a + b t$, $\Delta H_s = b_0 t$

🖤 🍣 🌑

Mature growth

Enhancement throughout (vs. asymptote)

- Impact for
 - Gustiness
 - Wind resolution
 - Scale aware physics

S00000

Interesting results for

- Low pass filter behavior
 - Impacts ensemble building
 - Impacts DA, will Bauer et al. (1996) work?
 - > Impacts for coupling time scales (including C_d results)
- Enhanced mean impacts, but
 - Including previously unseen secondary feedback
 - Do we need scale-aware physics?
 - Can approaches with "effective wind" work?

Limitations:

A specific WW3 configurationIn highly idealized conditions

Possible next steps:

- Nondimensional growth time and time scales assessments from operational models
- Similar assessments in fetch-limited conditions
- Similar assessment in moving storm conditions

