

Funded through the Search and Rescue New Initiatives Fund (SAR NIF)

Wave runup on a highly dissipative beach

Carmen Holmes-Smith, Johannes Gemmrich

University of Victoria

What is wave runup?

Societal Impacts

'I thought I was dead': Ucluelet woman and friend swept out to sea during storm

September 26, 2020 UPDATED

Coast Guard calls off search for boy swept out to sea, girl dies at Seaside hospital

by KATU News | Saturday, January 11th 2020

JANUARY 3, 2019

ΔA

Dangerous sneaker waves puzzle scientists

by Brittany Flaherty, GeoSpace

Outcomes of this project:

 Develop tools for local risk managers to use in predicting wave hazards through Parks Canada

What factors or mechanisms affect wave runup?

1. Offshore conditions

2. Wave transformation processes in the surf zone (i.e. bore-bore capture)

Data Collection

Record video of run-up on beach

Infrared Camera Mounted at KWISITIS Visitor Centre Recording rate of 5 frames per second

Get runup time-series

- Record video of unup on beach Extract timestacks from IR footage Trace interface between water and sand
- Program uses thresholding technique on timestacks to find interface between water and sand

Get runup time-series

 Program uses thresholding technique on timestacks to find interface between water and sand

12:12 12:13 12:14 12:15 12:16 12:17 12:18 12:19 12:20

• Time-series is converted to georeferenced runup

Spectral Analysis

1. Runup periods peak in the infragravity frequency range, much longer than wind-wave periods

wave buoy, offshore)

Swash Statistics

• Runup maxima extracted from time-series:

Swash Statistics

2. Larger, more variable, runup during energetic sea-states

Generation of IG waves

1. "Bound wave" mechanism

Generation of IG waves

1. "Bound wave" mechanism

2. Varying breakpoint Mechanism

Typically associated with steeper beaches, not highly dissipative beaches as studied here

Small waves in the group break closer to the beach, wave set-up is balanced by radiation stress

Large waves in the group break in

deeper water, generate wave set-up

Time variation in

radiation stress leads to a signal in the spectrum in the infragravity frequency range

Generation of IG waves

1. "Bound wave" mechanism

2. Varying breakpoint Mechanism Typically associated with steeper beaches, not highly dissipative beaches as studied here

3. Bore-bore capture

When two waves propagate towards the beach at different speeds, the lead bore can be overtaken by next bore

Generation of IG waves: Bore-bore capture

Example showing bore-bore capture in a timestack

Generation of IG waves: Bore-bore capture

Example showing bore-bore capture in a timestack

Why might more relative IG energy in the incoming wave spectrum result in higher runup?

IG waves contribute to variability in the speed and relative depth of bores approaching the shore, increasing the potential for captures to occur

Summary

- 1. Run-up periods peak in the infragravity frequency range, much longer than wind-wave periods
- 2. Larger, more variable, runup during energetic sea-states
- 3. Significant correlation between relative incoming IG energy and runup on the beach

Bore-bore capture strongly influences runup behaviour on highly dissipative beaches

Questions?

Supplementary slide 1

Supplementary slide 2

Frequency (Hz)