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Global STOFS Overview
• Global Surge and Tide Operational Forecast System (Global STOFS) runs atNOAA 4x daily.
• Driven by ADCIRC. Total water levels reported at hundreds of stations in USA,which we focus on here.
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Improving Global STOFS Rapidly?
• Sources of Model Discrepancy in Global STOFS

o lack of thermohaline circulation
o lack of hydrology
o poor bathymetry
o poor mesh resolution
o poor meteorological forcing

• Improvements are coming!
• However, we can improve Global STOFS “wholesale” without discriminating one

error source from another...
• ... and we can do this while attending to both Global STOFS’ input and output.
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Rapid Improvement for Operations
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Rapid Improvement for Operations
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Global STOFS + ML Overview
I. Global STOFS renders 7-day forecasts. We’ll consider forecasts at NOAA stations.
II. Source actual water levels and ADCIRC’s previous predictions from prior 5 days.
III.Source winds and tides for previous 5 days and 7-day forecast horizon.
IV.Exercise Transformer

V. Post-Process

Wind Hindcast (CFSV2) Wind Forecast
Tidal Re-Synthesis Tidal Re-Synthesis

ADCIRC Error Target (Forecasted ADCIRC Error)

Time Covariates Time Covariates
5-Day (before prediction) 7-Day (after prediction)

ADCIRC Hindcast ADCIRC Forecast
Transformer
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Training Temporal Fusion Transformer (TFT)
I. Ran 3-year Global STOFS hindcast from 2016 - 2019.
II. Sourced observed total water levels from NOAA from 2016 - 2019.
III.Sourced winds from CFSV2 from 2016 - 2019.
IV.Ran tidal re-synthesis from 2016 - 2019.
V. Merged data. 1-hour temporal resolution. Excluded time stamps with missing data.
VI.Separated data into 12-day contiguous chunks. Each contained target (ADCIRChindcasted error), 5 days of past covariates, and 7 days of future covariates. 70% ofeach station’s chunks allocated for training.
VII.A single TFT was trained on all stations chunk by chunk. The TFT was trained toforecast ADCIRC error 7 days into the future. 7



Model Tuning
• We used a tree-structured Parzen estimator to optimize the hyperparameters ofthe transformer model.
• The performance of the transformer was largely batch-size invariant.
• 10% dropout helped circumvent overfitting.
• Transformer trained with quantile loss.
• In general, a transformer trained on all NOAA stations was more performant than aregion-centric transformer.
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Example Global STOFS Output
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Example Global STOFS Output
Annapolis
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Adding ML Expected Forecast
Annapolis
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Adding ML Confidence Bounds
Annapolis
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Error Across Horizon
Annapolis
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Assessing Performance
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• To help quantify performance, we consider normalized root mean square error(NRMSE).
• NRMSE calculated for each 7-day validation period (hundreds per station).
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Importance of Winds in Chesapeake & Delaware
TFT Trained With Wind Covariates TFT Trained Without Wind Covariates
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Importance of Winds in Chesapeake & Delaware
Annapolis
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Chesapeake City Max Wind Speed(m/s)

Live and Die by Winds

7-Day Forecast

Full Validation Sweep

Large ADCIRC errors stronglycorrelated to winds!
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TFT in Delaware River: Bridesburg, PA
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• The TFT performs well for tidally-dominant stations.
• It does not perform as well in the Gulf of Mexico where stations are wind-driven and surroundedby relatively shallow water.
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Aggressive Correction at Tidally-Dominant Station
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Very Weak Correction at Wind-Driven Station
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Aggressive Correction Addressing Bias
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Conclusions
• The transformer is a rapid way to correct ADCIRC.

o Highly performant for tidally-dominant stations.
o Not as attentive to wind-driven stations, but renders corrections nevertheless.

• In the future...
o Expose transformer to longer training period.
o Generalize this approach to extrapolate corrections between stations.
o Make the transformer attentive to tropical cyclones.
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