

Numerical Investigation of Boulder Movement on the Seabed

Constantinos Menelaou, Daniel Toal, and Frédéric Dias

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards

Background on boulders

Nott's Equation (Nott 2003) for subaerial boulder

$$H \geq \frac{\frac{1}{\delta} \left(\frac{\rho_s - \rho_w}{\rho_w}\right) 2a - 4C_m \left(\frac{a}{b}\right) \left(\frac{\ddot{u}}{g}\right)}{C_D \left(\frac{ac}{b^2}\right) + C_L}$$

 $a,b,c,g,
ho_s,
ho_w$ Known constants physical parameters

Suggested values for unknowns by Nott:

$\ddot{u} = 1 m/s^2$	Instantaneous acceleration of the flow
$C_L = 0.178$	Coefficient of Lift
$C_{D} = 1.5$	Coefficient of Drag
$C_m = 2$	Coefficient of inertia
2	

$$\delta = Fr^2 = \frac{U^2}{gH} = \begin{cases} 1 & \text{for storm waves} \\ 4 & \text{for tsunami flows} \end{cases}$$

Cox et al. 2018

100

10 Mass (T) 1000

Smoothed Particles Hydrodynamics (SPH)

Kernel

Advantages:

- •Fully Lagrangian or meshless method
- •Free surface arises naturally
- Moving boundaries easily implemented

$$\langle f(\mathbf{x}) \rangle = \int_{\Omega} f(\mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) d\mathbf{x}'$$

$$\approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(\mathbf{x}_{j}) W(\mathbf{x}_{i} - \mathbf{x}_{j}, h)$$

DualSPHysics

Image from https://github.com/DualSPHysics/DualSPHysics/wiki/7.-Testcases#73-chrono-examples

Laboratory setup

J. N. Steer, O. Kimmoun and F. Dias 2021

Wave Propagation

Similar results for different focal points

Focusing location $(x_f) = 0$ m from wall

Boulder displacement

More than 1 order of magnitude difference between the experiment and the simulation

Snapshots of simulation vs experiment

x_{f} =-0.6 m from wall (Breaking case)

Snapshots of simulation vs experiment

x_f=0.22 m from wall (Non-breaking case)

Pressure signal at impact

Experiment

SPH

Low sustained but impact pressure

Low impact but high sustained pressure

Conclusions

•SPH can accurately capture the wave propagation

- •There is a shift between the breaking location of focused waves between SPH and experiments
- Reproducing impact pressure from focused waves with SPH is challenging
- •Multiphase model might improve results

Future Research

•Simulate cases boulders on seabed below cliffs at Inis Meáin.

- •Couple simulations with more accurate propagation models (i.e. SWASH).
- •Simulate and compare results with field experiments at Inis Meáin.

References

- 1. Cox, R., Ardhuin, F., Dias, F., Autret, R., Beisiegel, N., Earlie, C. S., Herterich, J. G., Kennedy, A., Paris, R., Raby, A., Schmitt, P., and Weiss, R. *Systematic review* shows that work done by storm waves can be misinterpreted as tsunami-related because commonly used hydrodynamic equations are flawed. Frontiers in Marine Science 7 (2-2020).
- Cox, R., Jahn, K. L., Watkins, O. G., and Cox, P. Extraordinary boulder transport by storm waves (west of ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits. Earth-Science Reviews 177 (2 -018), 623–636.
- Domínguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Martínez-Estívez, I., Mokos, A., Vacondio, R., Crespo, A. J., Rogers, B. D., Stansby, P. K., and Gómez-Gesteira, M. *Dualsphysics: from fluid dynamics to multiphysics problems*. Computational Particle Mechanics 9 (9 -2022), 867–895.
- 4. Monaghan, J. J. Smoothed particle hydrodynamics, 1992.
- 5. Steer, J. N., Kimmoun, O., and Dias, F. *Breaking-wave induced pressure and acceleration on a clifftop boulder*. Journal of Fluid Mechanics 929 (12-2021).

Thank you.

Special thanks to James Steer for his help with the data processing of the experiment and Lucia Robles Díaz for her guidance on the analysis.