SESSION C: COASTAL RISK 2

ROLE OF STORM MOTION AND ENVIRONMENT FLOW FOR SURGE RISK ASSESSMENT

GEETA NAIN, WILLIAM PRINGLE, JIALI WANG AND RAO KOTAMARTHI

Environmental Science Division Argonne National Laboratory

GY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Oct 2, 2023

3rd International Workshop on Waves, Storm Surges, and Coastal Hazards Incorporating the 17th International Waves Workshop

SURGE INDUCED BY HURRICANES POSE GREAT RISK TO COASTAL COMMUNITIES AND PROPERTIES 1. Lack of historical data

complicate risk assessment

Direct hurricane hits on US mainland (1851-2017)

50-year records (1963–2012) Rappaport 2014 Historical landfalling events count: NOAA (1851-2017)

Storm surge risk assessment is required for building resiliency in coastal communities

2. Another challenge: choice of wind field modeling

MODEL BASED FRAMEWORK FOR STORM SURGE

ROLE OF STORM MOTION AND ENVIRONMENT FLOW ON DIFFERENT PARAMETRIC TROPICAL CYCLONE FORCING FOR MODELED STORM TIDE

PARAMETRIC WIND PROFILE

Parametric models: Vortex + background wind field

 Mean radial profiles based on cyclostrophic or gradient wind

Background winds as function of forward speed, *Vs*

Popular parametric representation of Background wind $V_b(r)$

A snapshot of parametric wind spatial structure with LC12 background wind field model

CHOICE OF PARAMETRIC VORTEX MODELS

GAHM uses multiple isotach interpolation for all 4 quadrants

CLE15 is a simple full physics theoretical model merged inner core from Emanuel and Rotunno (2011) and outer core from Emanuel (2004)

r [km]

Chavas, Daniel R., Ning Lin, and Kerry Emanuel. 2015. "A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part I: Comparison with Observed Structure." *Journal of the Atmospheric Sciences* 72 (9): 3647–62. https://doi.org/10.1175/JAS-D-15-0014.1.

STORM CHARACTERISTICS

- Weaker and slower storms: example Sally, Eta, Cristobal, Fay, Bertha
- Intense and faster storms: example hurricane Laura, Zeta, Isaias

0 20 20 40 50 60 70

0 10 20 30 40 50 60 70

Year 2020 significant landfalling events

CRISTOBAL (2020)

15

10 [m/s]

3.0

2.4 🗒

d Di

1.2 8

0.0

Xe

Higher storm peak tide in CLE15 compared to Holland cristobal [2020] : Diff Max storm tide with Wind (CLE15-Holland)

- 20

- 3.0

- 2.4 (880,NAV

18

12

- 0.0

- 0.6 ×

CRISTOBAL (2020)

Higher storm peak tide in GAHM compared to CLE15

0.6

0.0

15

[s/m] pui

Мах

60°W

60°W

STORM TIDE TIME SERIES

Tide gauge station on right side of storm

Bay Waveland Yacht Club, MS

RMax=90km; ROCI=270km Station is inside ROCI (150km away from storm)

LAURA: PEAK STORM TIDE AND DIFFERENCE

With different Vortex model and same ADCIRC default background - Holland

Peak storm tide difference: CLE15 > GAHM dominated mostly on right in outer region

inner core

LAURA (2020) WIND FIELD With same ADCIRC default background field

WIND FORCING DIFFERENCE

GAHM-CLE15 with different background wind field

Difference is more prominent on left with ADCIRC default and right with LC12 background

LAURA WITH DIFFERENT WIND FORCING

SENSITIVITY OF VORTEX MODEL With different background wind models

SENSITIVITY OF BACKGROUND MODEL With different vortex models

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

STORM TIDE TIME SERIES HWM close to inner core

Calcasieu Pass, LA -HWM ID: 8768094 (1.08 m above MSL)

 Location was close to inner core on left side of the storm

STORM TIDE TIME SERIES

Station away from inner core

Satellite Vile Pate Kinder Eune Opeicuss Denning Delates Lake Charles Jenning Delates Crowley Broussard Abbevile New Iberis Morgan Cl

Parametric(CLE15+T) Parametric(GAHM+T) Parametric (H80+T)

Parametric (CLE15+LC12) Parametric (GAHM+LC12)

> Station was 43 km away from radius of outer closed isobar

SUMMARY

- Overall CLE15 is better than Holland for capturing wind and storm tide both as supported by previous study as well (Wang et al 2022)
- For weaker and slower storms such as Cristobal, GAHM seem to give higher peak storm tide as compared to CLE15
- For faster and intense storms, example : Laura, CLE15+LC12 seem to give higher storm tide and wind forcing

Ongoing work

- Investigating more storms for different year background flow and events
- Application in offshore wind energy project

