

A new operational wind wave observing system based on navigational X-band radar: a potential for a massive wave observations worldwide

<u>Elizaveta Ezhova^{1,2}, Alexander Gavrikov¹, Natalia Tilinina¹, Vitali Sharmar¹, Sergey Gulev¹</u>

¹P.P. Shirshov Institute of Oceanology, Russian Academy of Science Sea Atmosphere Interaction Laboratory

² Moscow Institute of Physics and Technology

Problem

- 1. Reduction of the number of visual observations
- 2. Visual estimates high uncertainty
- 3. Sparse coverage of the ocean with wave buoys
- 4. The need for the validation of satellite altimeter data

Sources of wave data

Drifting wave Spotter buoys

Density of the number of VOS reports

Density of actual ship traffic

Solution

Integrate SeaVision equipment into the onboard ship X-band radar system

Photo of the radar antenna JRC JMA-9122-6XA of the R/V Academic loffe

Photo of the PC installed on the captain's bridge, where the backscatter is digitized and recorded

Navigational radar characteristics

Pulse duration 0.8 mks (SP mode)

Wavelength 3.18 sm

Pulse frequency 9.41 Hz

Distance resolution 1.875 m

Azimuth resolution 5.27'

Turn period 2.5 s

Input backscatter has dimensions 4096 x 4096 px or 7680 m x 360°

SeaVision system on the captain's bridge

Wave parameters

- 1. Significant Wave Height
- 2. Period of spectrum peak
- 3. Direction of spectrum peak
- 4. Wavelength

Measurers: man, wave buoy, satellite altimeter

Expeditions

Tracks of 3 expeditions on "Academic loffe"

Photo of contact measurements by Spotter buoys

Number of stations: 59

Algorithm: dispersion stage

From the input backscatter cuts a rectangle on distance 675–1350 m, then it is divided on 32 segments

In each segment summation is conducted along the azimuth axis

where the wave crests are codirected with θ axis

The wave directional rose is the dispersion in polar coordinates

Algorithm: spectrum stage

30

2. Fitting dispersion curve $\omega = \sqrt{gk + \mathbf{k} \cdot \mathbf{V}}$ 4. Calculating

 $SWH = A + B\sqrt{SNR}$

SeaVision

Algorithm: validation

Validation with altimeters

Number of measurements: 187

Results

Contact: ezhova.ea@phystech.edu

- The SeaVision system has been developed and successfully deployed on multiple vessels within the IO RAS fleet
- The radar data processing algorithm enables the extraction of SWH with a correlation coefficient 0.75, period of spectrum with 0.86, direction with 0.78
- 3. The SeaVision system allows to automatically receive real-time objective data and transmit it to the global network

Wind waves in the North Atlantic from ship navigational radar: SeaVision development and its validation with the Spotter wave buoy and WaveWatch III. *Earth System Science Data*, *14*(8), 3615-3633.

Tilinina et al. 2022: