

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

TRENDS AND VARIABILITY OF WAVES UNDER SCENARIO RCP8.5 IN THE MEDITERRANEAN SEA

Giovanni Besio¹, Lorenzo Mentaschi² & <u>Francesco De Leo</u>¹

¹Department of Civil, Chemical and Environmental Engineering, University of Genoa ²Joint Research Centre, European Commission, Ispra, Italy

giovanni.besio@edu.unige.it lorenzo.mentaschi@ec.europa.eu francesco.deleo@edu.unige.it

BACKGROUND

Trends in sea states are particularly relevant in coastal and off-shore engineering

- \longrightarrow Stability of features (such as dunes) depends on the significant wave height (H_s)
- Coastal defenses are designed using Hs with a prescribed probability of exceedance which may be affected by long-term trends

What do we know so far about trends in wave climate?

2^{*nd*} International Workshop on Waves, Storm Surges and Coastal Hazards

LONG-TERM TREND DETECTION AND QUANTIFICATION

Trends are often detected through the Mann-Kendall test

 $x = [x_1, ..., x_n]$

$$Z_{MK} = \frac{1}{\sqrt{\sigma^2}} \begin{cases} S+1 & , S>0 \\ 0 & , S=0 \\ S-1 & , S<0 \end{cases} \qquad S = \sum_{k=1}^{n-1} \sum_{j=k+1}^n \delta_{j-k} \\ \sigma^2(S) = \frac{1}{18} \left[n\left(n-1\right)\left(2n+5\right) - \sum_{p=1}^g t_p\left(t_p-1\right)\left(2t_p+5\right) \right] \end{cases}$$

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

Observed Test Statistic

LONG-TERM TREND DETECTION AND QUANTIFICATION

"the p-values can be viewed as a continuous measure of the compatibility between the data and the entire model used to compute it, ranging from 0 for complete incompatibility to 1 for perfect compatibility, and in this sense may be viewed as measuring the fit of the model to the data"

Greenland et. al., 2016

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

COMPARISON BETWEEN *b* AND p_{MK} - data employed

http://www3.dicca.unige.it/meteocean/hindcast.html

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

COMPARISON BETWEEN *b* AND p_{MK} - AM H_s

! The use of b is sound also for time series with non-linear trends

 2^{nd} International Workshop on Waves, Storm Surges and Coastal Hazards

HISTORICAL TRENDS IN THE MEDITERRANEAN SEA - SPATIAL DISTRIBUTION

WAVE CLIMATE PROJECTION - THE IPPC SCENARIOS

lon/lat resolution: 11 km historical: 1970-2005 projection: 2006-2100

RCP 8.5

EUR-11

- CLMcom-CCCma-CanESM2_r1i1p1-CCLM4-8-17
- CLMcom-MIROC-MIROC5_r1i1p1-CCLM4-8-17
- MPI-M-MPI-ESM-LR_r1i1p1_SMHI-RCA4
- NCC-NorESM1-M_r1i1p1_SMHI-RCA4
- SMHI-CNRM-CERFACS-CNRM-CM5_r1i1p1-RCA4
- SMHI-IPSL-IPSL-CM5A-MR_r1i1p1-RCA4
- SMHI-MOHC-HadGEM2-ES_r1i1p1-RCA4

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

wave fields over the Mediterranean Sea

CLMcom-CCCma-CanESM2_r1i1p1-CCLM4-8-17

TREND ANALYSIS - the Innovative Trend Analysis (ITA)

Şen, 2011

 $x = [x_1, ..., x_n]$ $X_1 = [x_1, ..., x_n/2]$ $X_2 = [x_{n/2+1}, ..., x_n]$ × negative trend ×. Х 1

TREND ANALYSIS - annual mean *H*_s

time frame: 2010-2100

- $b \simeq -1 mm/yr$
- $\Delta H_s \simeq -9 cm$

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

TREND ANALYSIS - AM H_s

time frame: 2010-2100

- $b \simeq -2.5 mm/yr$
- $\Delta H_s \simeq -23 cm$

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

2

0

4.6

4.8

5.4

5.2

5

H_s^{max} [m]

TREND ANALYSIS - annual mean T_m

6

4

2

0 4.7

4.75

4.8

T_m^{mean} [m]

4.85

4.9

- $b \simeq -1 ms/yr$
- $\Delta T_m \simeq -0.1s$

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

4.95

TREND ANALYSIS - AM T_m

time frame: 2010-2100

- $b \simeq -2ms/yr$
- $\Delta T_m \simeq -0.2s$

time frame: 2010-2100

TREND ANALYSIS - spatial distribution of AM trends

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

time frame: 2010-2100

TREND ANALYSIS - spatial distribution of mean data trends

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

Università di Genova DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

CONCLUSIONS AND FINAL REMARKS

- *b* is a reliable index to assess long term trends of time series
- different wind models lead to different wave fields though characterized by consistent trends
- H_S and T_m are characterized by trends similarly distributed over the basin
- on average waves intensity in the Mediterranean Sea is expected to decrease
- further investigations need to be performed on waves direction and spectral partitions

2nd International Workshop on Waves, Storm Surges and Coastal Hazards

Thank you for listening

giovanni.besio@edu.unige.it lorenzo.mentaschi@ec.europa.eu francesco.deleo@edu.unige.it

