Projected 21st Century changes in extreme wind-wave events

Alberto Meucci¹, Ian R. Young¹, Mark Hemer², Ebru Kirezci¹, Roshanka Ranasinghe^{3,4,5} alberto.meucci@unimelb.edu.au

¹Department of Infrastructure Engineering, University of Melbourne ²CSIRO Ocean and Atmosphere, Hobart, Tasmania ³Department of Water Science and Engineering, IHE-Delft, Delft, The Netherlands ⁴Coastal and Offshore Engineering, Deltares, The Netherlands ⁵Water Engineering and Management, Faculty of Engineering Technology, University of Twente

The missing piece Extreme wind-waves

Past uncertainties:

Wave model

Atmospheric model

Observations

Statistical

Future uncertainties:

Emissions scenarios

GCMs

Dataset WWIII (v3.14) 6hourly datasets forced using CMIP5 GCM surface winds (Hemer et al., 2016)

	CMIP	АТМ	WAVE		Period		
	phase	lon x lat [°]	lon x lat [°]	Δt			
ACCESS1.0	5	1.88 x 1.25	1.0 x 1.0	6h	1979-2005	2081-2100	
BCC-CSM1.1	5	2.8 x 2.8	1.0 x 1.0	6h	1979-2005	2081-2100	
GFDL-CM3	5	2.5 x 2.0	1.0 x 1.0	6h	1979-2005	2081-2100	NUF4.3
HadGEM2-ES	5	1.88 x 1.25	1.0 x 1.0	6h	1979-2005	2081-2100	
INMCM4	5	2.0 x 1.25	1.0 x 1.0	6h	1979-2005	2081-2100	RCP8.5
MIROC5	5	1.4 x 1.4	1.0 x 1.0	6h	1979-2005	2081-2100	
MRI-CGCM3	5	1.1 x 1.1	1.0 x 1.0	6h	1979-2005	2081-2100	4

Selection of extremes

(Lopatoukhin et al., 2000)

peaks over 90th percentile threshold for each model -- 48h storm independence

Representative time interval (Br

(Breivik et al., 2013, 2014)

Historical dataset 1979-2005:

 $T_{eq} = 27$ years \cdot 365 \cdot 4 hindcasts a day \cdot 6h \cdot 7 GCMs = 189 years

Future projection dataset 2081-2100:

 $T_{eq} = 20$ years \cdot 365 \cdot 4 hindcasts a day \cdot 6h \cdot 7 GCMs = 140 years

Models contribution

ACCESS1.0

BCC-CSM1.1

GFDL-CM3 HadGEM2-ES INMCM4 MIROC5 MRI-CGCM3

Historical dataset extreme estimates

WWIII forced with CFSR winds

Confidence levels

Bootstrap estimates on the 1000 peaks obtained from the ensemble pooling technique

Projected changes in extreme wind-waves (H_s^{100}) 2081–2100 - 1979–2005 90th perc. 70th

RCP8.5

Changes along global coastlines

Percentage of changes

in H_s^{100}

(-15) - (-10)
(-10) - (-5)
(-5) - 0
<u> </u>
<u> </u>
10 15

15 - 20

	RCI	P4.5	RCP8.5		
	Coastline	Coastline	Coastline	Coastline	
(% change)	length	length	length	length	
	(km)	(%)	(km)	(%)	
-20% to -15%	9,643	0.89	7,399	0.69	
-15% to -10%	13,130	1.22	25,281	2.34	
-10% to -5%	69,208	6.42	120,625	11.18	
-5% to 0%	277,810	25.76	285,227	26.45	
0% to 5%	499,537	46.32	365,741	33.91	
5% to 10%	168,420	15.62	182,163	16.89	
10% to 15%	33,053	3.06	68,087	6.31	
15% to 20%	7,737	0.72	24,015	2.23	

DIVA dataset locations

 ΔH_{s}^{100} at the closest offshore grid point

Limitations

- Stationarity
- Inhomogeneous datasets
- Tropical Cyclones still not correctly reproduced by GCMs
- Possible biases introduced by differently distributed datasets

Potential

- Results are consistent with previous studies (Hemer et al. 2013; Wang et al. 2014; Aarnes et al. 2017; Morim et al. 2019)
- Inter models low correlation guarantees independence
- Possibility to synthesize an equivalent time series of duration longer than the simulation period
- Increased dataset reduces confidence intervals

At what point are we?

- Higher resolutions are needed
- Ensemble approach to TC areas with increasing model resolution
- Still many uncertainties are characterizing observations of extremes
- Improved GCMs and additional models may allow use of Direct Return level Estimates
- Do GCMs ensemble models for future projections exist?

References

Aarnes, O. J., Reistad, M., Breivik, Ø., Bitner-Gregersen, E., Ingolf Eide, L., Gramstad, O., ... & Vanem, E. (2017). Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic. Journal of Geophysical Research: Oceans, 122(4), 3394-3403.

Breivik, Ø., Aarnes, O. J., Bidlot, J.-R., Carrasco, A., and Saetra, Ø. (2013). Wave extremes in the northeast Atlantic from ensemble forecasts. *Journal of Climate*, 26(19):7525–7540.

Breivik, Ø., Aarnes, O. J., Abdalla, S., Bidlot, J. R., & Janssen, P. A. (2014). Wind and wave extremes over the world oceans from very large ensembles. *Geophysical Research Letters*, *41*(14), 5122-5131.

Breivik, Ø. and Aarnes, O.J., (2017). Efficient bootstrap estimates for tail statistics. *Natural Hazards and Earth System Sciences*, 17(3), p.357.

Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). *An introduction to statistical modeling of extreme values* (Vol. 208). London: Springer.

Déqué, M. (2007). Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global and Planetary Change, 57(1-2), 16-26.

Hemer, M. A., Fan, Y., Mori, N., Semedo, A., & Wang, X. L. (2013). Projected changes in wave climate from a multi-model ensemble. Nature climate change, 3(5), 471.

Hemer, M. A., & Trenham, C. E. (2016). Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Modelling, 103, 190-203.

Lopatoukhin, L., Rozhkov, V., Ryabinin, V., Swail, V., Boukhanovsky, A., and Degtyarev, A. (2000). Estimation of extreme wind wave heights. Technical report, WMO.

Lorenz, E. N. (1965). A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321-333.

Molteni, F., Buizza, R., Palmer, T. N., & Petroliagis, T. (1996). The ECMWF ensemble prediction system: Methodology and validation. Quarterly journal of the royal meteorological society, 122(529), 73-119.

Morim, J., Hemer, M., Wang, X. L., Cartwright, N., Trenham, C., Semedo, A., ... & Erikson, L. (2019). Robustness and uncertainties in global multivariate wind-wave climate projections. *Nature Climate Change*, *9*(9), 711-718.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498.

Wang, X. L., Feng, Y., & Swail, V. R. (2014). Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. *Geophysical Research Letters*, *41*(3), 1026-1034.

Young, I. R., Zieger, S., & Babanin, A. V. (2011). Global trends in wind speed and wave height. *Science*, *332*(6028), 451-455.

Young, I. R., & Ribal, A. (2019). Multiplatform evaluation of global trends in wind speed and wave height. *Science*, *364*(6440), 548-552.

Supplementary material

Similarity test between distribution of extremes

16

Model ensemble performance 1979-2005

Comparable to total multi-model ensemble in Morim et al., (2019)

Instability of single model projected extreme changes

 $\Delta = 1979-2005$ •

2081-2100

RCP8.5

Independent and Identically Distributed (i.i.d) data

