

...a project, with research members from around the globe, that provides infrastructure to support a systematic, communitybased framework for validation and inter-comparison of wave hindcasts and projections

MOTIVATION

- Ocean scale waves are relevant and important for, among other things:
 - harnessing of wave energy, safety, commerce, and economics (e.g., transport of goods), and in coastal areas drive important processes that determine flooding and erosion.
- Buoy, model, and remotely sensed data are used to understand and describe historical spatial and temporal variations but most global scale or ocean basin studies
 - focus on or are limited to wave heights and periods
 - use single datasets and disparate methods that have led to sometimes contrasting results

OBJECTIVE

To that end, there is a need to asses how well variability and trends described by current generation datasets compare

Here we aim to

- assess the variance in wave climatology and rates of change across the current generation of hindcast & reanalysis products, and
- evaluate if robust signals of change can be quantified

APPROACH

Being accomplished via the joint efforts of the COWCliP group, an international collaborative research community of researchers with interests in wind-wave climate variability and change.

10 individual groups contributed and post-processed hindcast or reanalysis global scale datasets in a consistent manner using the same code (provided by Wang and others)

- monthly, seasonal, and annual statistics
- common overlapping time-period 1980-2015 (35 years) (for the most part)

COWCliP meeting in Liverpool, 2017

CONTRIBUTED DATASETS

CONTRIBUTED DATASETS

Limit the analysis to

- Southern and Northern hemisphere summers and winters
 - DJF and JJA
- Median and 90th percentile statistics (p50 and p90)
- Variables: H_s, T_{m01}, D_m, H_sRo (number of rough days)

DJF p50 climatology (1985-2015)

IORAS global

JRA55 ST2

Ocean Wave Climate

The second s

DJF p99 climatology (1985-2015)

CSIRO glob24m

GOW1 -

JRA55 ST2

CSIRO 1deg

ERAI

IORAS global

JRA55 ST4

10 Ensemble 8 6 4 2

JRC ERAI

JJA p50 climatology (1985-2015)

CSIRO glob24m

GOW1

JRA55 ST2

ERA5

CSIRO 1deg

GOW2

JJA p99 climatology (1985-2015)

CSIRO glob24m

ERA5

JRA55 ST4

IORAS global

JRC CFSR

NOC

10

8

6

2

JRC ERAI

Ensemble

CSIRO 1deg

JRA55 ST2

GOW1

JJA p99 climatology (1985-2015)

CSIRO glob24m

IRA55 ST2

ERA5

JRA55 ST4

Leaving us with 9 members 6

ERAI

Ensemble DJF

IORAS

JRA55-ST4

NOC

$H_{\rm s}\,{\rm p50}$

S.F

50

S.B

SE

15

*H*_s p90

S.F

15

0.05-0.05

T_m p50

0.5

1

-0.05	
0.00	

m/yr

0

0 s/yr

0.05-1

-0.5 0 °/yr D_m p50

Ensemble DJF (CFSR driven)

H_s p50

*H*_s p90

T_m p50

-0.05 0 0.05 m/yr

Ensemble DJF (CFSR driven)

H_s p50

$H_{\rm s}$ p90

T_m p50

Altimeter Hs p90 DJF (Young & Ribal, 2019)

Ensemble JJA

50

ERAS

$H_{\rm s}$ p50

H_s p90

50

T_m p50

D_m p50

1

0

m/vr

-0.05

0.050.05

0 s/vr 0.05 -1 -0.5 0 0.5

Ensemble JJA (CFSR driven)

*H*_s p90

15

$T_m p50$

H, p50

Altimeter Hs p50 JJA (Ribaldi & Young, 2019)

-0.04 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 -0.03

Ocean Wave Climate

Altimeter Hs p90 JJA (Ribaldi & Young, 2019)

Trends

Trends compared to reference altimeter data^[1]

Ensemble mean trend minus altimeter

wave height trends: ensemble mean and robustness

Method A: (ref: 11,12,13)

Large change with high model agreement: multi-model mean trend > exceeds two standard deviations of internal variability AND at least 90% of the models agree on the sign of change

Small signal or low agreement of models: multi-model mean trend > exceeds standard deviation of internal variability

Method B1: (variant of method A)

80% of the models show a trend < two standard deviations of variability (calculated from interannual variations within each model; ie use all model data) (no distinction between large and small model agreement)

Method B2: (ref: Hemer et al 2013; Wang et al, 2014; and others) Multi-model ensemble mean > inter-model standard deviation

Method C: (ref: Knutti and Sedláček, 2013)

Dimensionless robustness measure considers natural variability and agreement on magnitude and sign of change. Uses a signal to noise ratio and ranked probability skill score.

Small signa

nble average

Regions where at least 80% of the models individually show no significant change are hatched and interpreted as 'changes unlikely'

Method D: (ref: Tebaldi et al., 2011; Neelin et al., 2006)

Robust large change: more than 50% of the models show significant trends and at least 80% of those agree on the sign of change

Unreliable large change: more than 50% of the models show significant trends but less than 80% of those agree on the sign of change

Method E: (ref: Mentaschi et al 2017; Alferi et al 2015; Vousdoukas et al 2016) Robust change with high model agreement: Dimensionless coefficient of variation <1, where the CV is the intermodel standard deviation divided by the

wave height trends: ensemble mean and robustness

Percent area of robust change signal

.. and (avg. rate of change [cm/yr or s/yr])

Region	p50		p90	
	Hs	1	Hs	— ——
NP	45 (0.40)		38 (1.02)	
	22 (-0.44)		29 (-0.70)	
NA	39 (0.56)		37 (0.67)	
	16 (-0.39)		18 (-0.36)	
SP	95 (0.54)		92 (0.70)	
	<0.1 (-0.08)		3 (-0.15)	
SA	83 (0.63)		89 (0.98)	
	6 (-0.13)		1 (-0.08)	
ТА	52 (0.26)		48 (0.28)	
	11 (-0.10)		15 (-0.12)	
ТР	67 (0.30		66 (0.39)	
	19 (-0.15)		21 (-0.34)	
ТІ	51 (0.30)		52 (0.49)	
	12 (-0.15)		11 (-0.22)	
SI	82 (0.38)		69 (0.62)	
	15 (-0.17)		27 (-0.26)	

DJF

	Aff			
Region	p50		p90	
	Hs	ŀ	Hs	
	13 (0.17)		11 (0.52)	
NP	56 (-0.44)		59 (-0.90)	
	33 (0.18)		13 (0.25)	
NA	24 (-0.36)		44 (-0.60)	
	95 (0.85)		95 (1.24)	
SP	1 (-0.20)		1 (-0.11)	
	86 (0.66)		84 (0.85)	
SA	1 (-0.18)		3 (-0.24)	
	56 (0.44)		54 (0.67)	
TA	6 (-0.14)		8 (-0.17)	
	72 (0.39)		66 (0.55)	
TP	15 (-0.19)		21 (-0.33)	
	54 (0.24)		48 (0.42)	
TI	9 (-0.20)		15 (-0.28)	
	81 (0.43)		73 (0.60)	
SI	13 (-0.19)		21 (-0.21)	

ensemble mean trend in annual frequency of rough days

Method of computing the ensemble

How to compute the ensemble mean... does it matter?

Method of computing the ensemble

method 1 – method 2

Summary

- Difficult to robustly quantify inter-model variability introduced by different model settings from the contributed datasets
 - But the winds clearly have the strongest influence [ITWS ("it's the winds stupid!", Vince Cardone)]
 - CFSR winds have a step change in ~1994, which strongly influences trends
- Method of computing the ensemble can make a difference of ~10%
- Robust signals of change are identifiable across dynamically downscaled models (excepting models influenced by step-changes in atmospheric forcing)
 - Robust signals of upward trending Hs are noted across much of the globe
 - Strong agreement among models that Hs is increasing in both summer and winter and for medians and extremes across >90% of the Southern Ocean at a rate of ~1cm/yr
 - Strong confidence that >60% of the Indian and Central Pacific Oceans are experiencing increasing Hs
 - There is high confidence that the North Sea and Eastern North Pacific have experienced decreasing Hs and direction changes
- It is noted however that rates of change are biased positive compared to altimeter Hs trends

Thank you

Special thanks to all the COWCliP collaborators

O Norwegian Meteorological

