

MODELING OF WAVE INTERACTION WITH NATURAL AND NATURE-BASED FEATURES

Jane McKee Smith, Mary A. Bryant, Tyler Hesser, Catie Dillon

Engineer Research and Development Center US Army Corps of Engineers

Ali Abdolali

National Oceanic and Atmospheric Administration, National Centers for Environmental Protection

UNCLASSIFIED

Aron Roland BGS IT&E GmbH

UNCLASSIFIED

US Army Corps of Engineers

Natural and Natured-Based Features

Coastal Engineering and Ecosystem Benefits of Natural and Nature-Based Features

Corps has ongoing research with agency and academic partners to:

- Summarize state of knowledge for Natural and Nature-Based Features (NNBF)
- Quantify capacity to provide coastal engineering and ecosystem services
- Advance open-source models for coastal engineering & ecosystem benefits
- Develop guidance for design, maintenance, and adaptation of NNBF

San Francisco Bay

- 90% of tidal wetlands filled
- Reduced habitat
- Endangered plant & animal species
- Removed buffer for rising sea level

US Army Corps of Engineers

Hamilton Bay Restoration

- Site diked ~100 yr ago, Hamilton Army Airfield
- Significant subsidence
- 260-hectare wetland restoration, 20 yrs
- Beneficial use of 19 mill m³ of dredged material
- Wetland design w/ berms
- U.S. Army Corps of Engineers and the California Coastal Conservancy

US Army Corps of Engineers

Hamilton Bay Restoration

WaveWatch III

- Phase-averaged, spectra wave model
 - Unstructured grid
 - Implicit solver
 - Domain decomposition
- Wave-vegetation interaction based on Mendez and Losada (2004)

$$\epsilon_{\nu} = \sqrt{\frac{2}{\pi}} \frac{g^2 C_d b_{\nu} N}{h} \left(\frac{\overline{k}}{2\pi \overline{f}}\right)^3 \frac{\sinh^3(\overline{k}\alpha h) + 3\sinh(\overline{k}\alpha h)}{3\overline{k}\cosh^3(\overline{k}h)} \sqrt{\overline{E}}$$

- C_d = drag coefficient, b_v = stem diameter, α = relative stem length, *N*=vegetation density
- Implementation called with VEG1 switch
- Operates in serial or parallel, implicit or explicit, structured or unstructured grids
- Called after depth limited breaking but before bottom interactions
- Spatially and temporally variable vegetation coefficients read with ww3_prnc, or homogeneous variables in ww3_shel

Laboratory Test

- 1.5 m-wide wave flume
 - 64.1 m long, 1.5 m deep
- Wave and Water Levels
 - Depths: 30.5 cm, 45.7 cm, 53.3 cm
 - I_s/h ratios of 1.0 (emergent), 0.91, 0.78
 - Irregular waves
 - ► T_p ~ 1.25 s to 2.25 s
 - $H_{m0} \sim ranging from 5.0 cm to 19.2 cm$

Polyolefin tubing

- 6.4 mm diameter
- 41.5 cm stem length
- densities of 100, 200, and 400 stems/m²
 - correspond to element spacing of 10.0 cm, 7.1 cm, and 5.0 cm

Anderson & Smith 2014

Hamilton Field Data Collection

- Waves (wave staffs)
- Water Levels
- Currents
- Salinity
- Conductivity
- Temperature
- Wind Speed and Direction
- Sedimentation

US Army Corps of Engineers

Field Data Collection

Validation

Two Storms

- Feb 2015
 - ▶ 9 m/s NW
- April 2015
 10 m/s SW

US Army Corps of Engineers

Hamilton As-Built

Depth m MSI

US Army Corps of Engineers

Idealized Simulations

- Winds of 15 and 20 m/s (14-yr wind record at Richmond, CA)
- Water levels of + 0.5 and +1.0 MSL
- 8 wind directions (N, NE, E, SE, S, SW, W, NW)
- With and without vegetation
 - Pickleweed
 - Within depth range of +0.4-0.95 m MSL
 - C_D = 0.1, stem height=0.6 m, density = 300/m² diameter = 0.01 m (Northwest Hydraulic Consultants 2011)

US Army Corps of Engineers

Example Results (20 m/s wind, NW)

Sears Point Restoration

- Similar environment to Hamilton
- 390 hectare tidal wetland restoration
- Wetland design w/ mounds
- Sonoma Land Trust and Ducks Unlimited

US Army Corps of Engineers

Bathymetry: Berms, Mounds, No Features

Wave Height: Berms, Mounds, No Features

Summary

- Spatially/temporally variable vegetation source term implemented in WW3 branch (C_D, stem thickness, stem length, stem density)
 - Documentation and additional validation underway
- Nature-based island features:
 - Significant reduction in wave height in the wetland
 - Long, linear berms were ~ twice as effective as mounds to reduce wave energy (depends of water level)
 - Vegetation increases wave height reductions (dependent on submergence)
- Unstructured WW3 is effective for complex wetland configurations to evaluate NNBF features
 - Requires vegetation parameters
 - Requires C_D specification