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MOTIVATION

Longshore Sediment Transport (LST) is strong involved in most of shoreline changes at 
medium-term (i.e from month to decades).

LST is governed by
wave climate.

Apply state of the art approaches of wave climatology to enhance LST assesment

Alonso et al. (2015) Alonso et al. (2018)

Usually the highest term on
Coastal Sediment Budgets
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Approches of wave climatology used:

Long-term wave systems. Portilla et al. (2015)

Maximum correlation with wind velocity projection on the azimuth. 
Jiang & Mu (2018).
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Approches of wave climatology used:

Long-term wave systems. Portilla et al. (2015)
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Approches of wave climatology used:

Maximum correlation with wind velocity projected in the azimuth. Jiang & Mu 201.
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Case study:
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Case study:

Orientation: 146°
Prof. ~ 23 m

143°, ~ 21 m

139°, ~ 18 m

130°, ~ 15 m

Solari et al. (2018). highligths the
relevance of LST for coatal sediment
Budget in the Uruguayan Atlantic coast
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Database: Uruguayan wave hindcast. Alonso & Solari xxxx (under revision)

Model: 
WAVEWATCH III ® 5.16. Multi-grid mode. 
Two-way nesting. 5 regular grids.
Sin+Sds --> ST4 

Forcings:
CFSR winds ~0.31° for all the grids.
TELEMAC water levels 2’ for high Rank grids (Green and yelllow)
TELEMAC currents 1’ for high Rank grids (Green and yelllow)   

Global 
(1.25° x 1 °)

South Atlantic 
(0.5° x 0.5 °)

10’x10’

2’x 2’

40’’x 40’’

Period: 1985 – 2016. 
Time resolution: 1 h
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Methodology:

1) Wave spectral partition. 
Watersheed algorithm (Meyer (1994), available in Matlab), filtering systems with Hs < 0.25 m.

2) Long-term wave systems identification. 
Partition of the bivariate distribution of (T,D), filtering systems with frecuency of occurrence < 50 h / year.

3) LSTsystem and LST estimations and identification of the most relevant.
CERC formula improved by Mil-homens et al. (2013)

4) Exploration of the Long-term wave systems most relevant for LST.
Region of origin, Sea fraction, Statistics of (H,T, D)

5)    Analysis of the variability of LSTsystem

Annual cycle, inter-anual variations and correlation with climate indexes.
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Results:
B3
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Results:
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Results:

Easterly long-term wave system (EWS)
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Results:
Southerly long-term wave system (SWS)
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Results:

Hours / year Hmean (m) Hstd (m) Hmax (m) Sea (%)

EWS 6634.8 0.88 0.55 6.14 16.1 %

SWS 6730.7 0.97 0.69 6.6 18.7%

Tmean (S) T range (S) Dmean(°) D range (°)

EWS 8.3 [4 – 12] 88 [60 120]

SWS 9.2 [3 – 19] 178 [150 240]

EWS

SWS

Hanson & Phillips 
(2001)
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Results:

Annual cycle
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Results:

Inter-annual variability
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Results:

Inter-annual variability
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Results:

Inter-annual variability
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Results:

Correlation with climate indexes 
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Results:
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Results:
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Results:
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Conclusions:
• The two wave systems with highest capacity to transport sediment along the Uruguayan

Atlantic coast were identified and characterized.

• The LSTsystem approach shows to be able to provide a good insigth into LST dynamics.

• The Maximum correlation with wind projection on the azimuth allows to identify the
generation zones of these systems. 

Future met-ocean work will focus there in order to impove data for coastal
morphodynamics studies in the Uruguayan Atlantic coast. 

EWS and SWS. They transport sediment in opposite directions.

Annual cycle of the EWS and SWS are out of phase, acentuating the
amplitude of the anual cycle of LSTnet.

Larger peaks on seasonal LSTnet are associated with ESW.

Negative (transport to the northeast) trends on seasonal transport are 
observed on JAS and OND associated with both systems.

Significant correlation with climate indexes are obtained comparing seasonal
transport and LSTsystem. (LSTESE with Niño 3.4 and LSTSSE with AAO).
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Thanks for your attention !

https://www.fing.edu.uy/imfia/congresos/latwaves/
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