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1. Introduction 

• Post-processing models for non-linear ensemble averaging are developed to reduce the 
error of wave forecasts, especially at longer forecast ranges. 

3. Neural Networks training and tests 

A conservative ensemble approach is currently used to calculate the arithmetic ensemble mean (EM) 
for a variable p in GWES, where n is the number of ensemble members and pi is the i-th ensemble 
member. It assumes a linear relationship between the EM and ensemble members 

2. Neural Network Model 

𝐸𝑀 = 1𝑛 𝑝𝑖𝑛
𝑖=1  

𝑁𝐸𝑀 = 𝑁𝑁(𝑝1 , 𝑝2 , ⋯ , 𝑝𝑛) 

𝑵𝑬𝑴 = 𝑬𝑴+𝑵𝑵𝒓(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) 

However, in reality this relationship may be strongly nonlinear so a neural network model is proposed: 

The combination of both methodologies (1 and 2) present better results, using the NN model to 
simulate the non-linear part of the signal together with the model error, appended to the arithmetic 
EM. The target variable to simulate is the error signal, or residue, of the arithmetic mean compared to 
observations: 

A multilayer perceptron model (MLP-NN) with hyperbolic tangent as the activation function is 
considered with backpropagation (gradient descent) training (Haykin, 1999); where 𝑝𝑖 is the input and 𝑦𝑞 the output, 𝑎 and 𝑏 are the NN weights, 𝑛 and 𝑚 are the numbers of inputs and outputs, and 𝑘 is 

the number of nonlinear basis functions (hyperbolic tangents) 𝑵𝑵 𝒑𝟏 , 𝒑𝟐 ,⋯ , 𝒑𝒏; 𝒂, 𝒃 = 𝒚𝒒 = 𝒂𝒒𝟎 + 𝒂𝒒𝒋𝒌
𝒋=𝟏 . 𝒕𝒂𝒏𝒉 𝒃𝒋𝟎 + 𝒃𝒋𝒊 . 𝒑𝒊𝒏

𝒊=𝟏 ;     𝒒 = 𝟏, 𝟐,… ,𝒎 

Sensitivity tests were performed, modifying the number of neurons of the intermediate layer and 
excluding/including variables, applied to different NN architectures. 
 

Input variables (total of 133): 
 

• Control run plus 20 ensemble members of: 10-m wind intensity (U10), significant wave 
height (Hs), peak wave period (Tp), mean wave period (Tm), significant wave height of 
wind-sea (WsH), and period of wind-sea (Tws);  

 

• Latitude and longitude (sin/cos); 
 

 

• Time sin 2𝜋𝑡 𝑇  and cos 2𝜋𝑡 𝑇 ; and Forecast time (0 to 10 days).  
 
Output variables: residue of U10 and Hs 

• Multilayer perceptron neural networks are able to calculate nonlinear ensemble averages with lower 
systematic and scatter errors than the traditional arithmetic ensemble mean. 

 

• The novel method shows that one single NN model with 140 neurons is able to improve the error 
metrics for the whole globe while covering all forecast ranges analyzed. 

 

• The RMSE of day-10 forecasts from the NN simulations indicated a gain of two days in predictability 
when compared to the arithmetic ensemble mean of GWES (EM). 

 

• The time-consuming step is the NN training only. The operational calculation of the nonlinear 
ensemble averages takes a few seconds. Results of NN training consists of two matrices of weights 
and two vectors of bias, and it is easily re-trained when necessary. 
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4. Conclusions 

• 20 ensemble members plus a control member compose the NCEP 
Global Wave Ensemble System (GWES), forced by the Global 
Ensemble Forecast System (GEFS) winds on WAVEWATCH III. 

• Neural network models (NNs) with different architectures are 
developed to reduce the GWES error by training the NNs using quality-
controlled observations from buoys and altimeters. 

• Target variables are 10-m wind speed (U10) from GEFS and 
significant wave height (Hs) from GWES. 

Our work is divided in three steps: 
 

 NNs applied to single locations (two buoys) 
 

 NNs in the Gulf of Mexico (six buoys) 
 

 Global NNs trained with altimeter data 

First test at single locations: two pairs of NDBC buoys. Compared to the arithmetic ensemble mean, 
the NN ensemble averaging allowed an improvement on the 5-day forecast of: 64% in bias; 29% in 
RMSE and SI; 11% in correlation coefficient. Further benefit of reducing the error at higher 
percentiles. 

Second test in the Gulf of Mexico with six buoys. Total of 105,600 NNs: 
 
 

• 12 different numbers of neurons [2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 80, 200]; 
 
 

• 8 different filtering windows to reduce noise [0, 24, 48, 96, 144, 192, 288, 480] hours; 
 
 

• 100 seeds for random initialization; 
 
 

Hs     FDay 10 

 Small number of neurons are sufficient to reduce 
the bias, while 35 to 50 neurons produce the 
greatest reduction in both the scatter and 
systematic errors. 

 Main advantage of NNs occurs at longer 
forecast ranges beyond four days. 

 The NNs were able to improve the correlation 
coefficient on forecast day 10 from 0.39 to 0.61 
for U10, and from 0.50 to 0.76 for Hs. 

 
 
 

Figure 1: Position of NDBC buoys (left); and RMSE as a function of 

the number of neurons (right). 

Hs U10 
Figure 2: Results of simulations 
in the Gulf of Mexico. Error 
metrics as a function of the 
forecast range.  
 

Black curves are the ensemble 
members,  
 

cyan is the control run,  
 

red is the arithmetic mean of the 
ensemble members, 
 

dashed-green line is the 
nonlinear ensemble average 
using NNs. 

Third test, Global NNs, trained with one year (2017) of 
altimeter data (JASON2, JASON3, SARAL, CRYOSAT2) 
 
 

• The along-track data are collocated into the regular grid of 
GWES (weighted average: maximum distance of 25 km and 
time distance of 0.5 hours for each grid point [Lat/Lon/Time]). 

 

• Total count of 7,521,298 altimeter/GWES matchups; 
 
 

• For each matchup altimeter/GWES: matrix of 21 ensemble 
members per 41 forecast instants. 

Nonlinear ensemble averages using NNs are better than the arithmetic EM for the 
whole globe and range of forecast, including U10 and Hs. 
 

• NN models with few neurons are able to reduce the systematic bias for short-range 

forecasts, while NNs with more neurons are required to minimize the scatter error 
at longer forecast ranges. 

 

• 60 to 150 neurons produce the best results for both the scatter systematic errors. 
 

 

The RMSE of NN for forecast day10 is similar to the EM of day8 and the control run of day6. 

• NN model evaluation: Cross-validation with 3 cycles. One year (2017) of data divided in 
training (2/3 of dataset) and test set (1/3). Further assessments of hybrid modeling results 
analyzing the scatter and systematic components of error (Mentaschi et al., 2013), and the 
multivariate distribution of it (Campos et al., 2018). 

𝑁𝐵𝑖𝑎𝑠 =  𝑦𝑖 − 𝑥𝑖𝑛𝑖=1 𝑥𝑖𝑛𝑖=1   𝑆𝐼 =  𝑦𝑖 − 𝑦 − 𝑥𝑖 − 𝑥 2𝑛𝑖=1  𝑥𝑖2𝑛𝑖=1  

Figure 4: Schematic of time and forecast 
cycle data selection (both in hours), for a 
specific time and location of the 
observation, centered at the satellite time 
(green dashed line).  

New batch of NN tests (780 NNs trained in high-performance computer; DT2,UMD): 
 

• 26 different number of neurons (2 to 500);10 seeds (initialization); and 3 equally-divided datasets. 
 

Main Goal: evaluate the capacity (and complexity) of a single MLP-NN model to improve the GWES 
ensemble average for the whole globe and forecast ranges (0 to day-10). 
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Figure 6: Results of NN tests in terms of the 
scatter error (y-axis) and systematic error (x-
axis). The left plot present the results (training 
set in magenta and test set in green) compared 
to the control run (red square) and the 
arithmetic EM (cyan square). The right plot is a 
magnification of the clouds of NN results on the 
test set, where the color indicates the number 
of neurons and the size of the dots indicates 
the normalized standard deviation of scatter 
error throughout different forecast ranges. 

Figure 5: NRMSE as functions of the number of 
neurons, for 3 different forecast horizons. The 
dashed line is the average (over different 
seeds) result for training set while solid line is 
the results for test set. On top of each plot are 
the same error metrics for the GWES control 
run and the arithmetic ensemble mean (EM). 
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Figure 3: Practical implementation of the trained neural 
networks applied to the Gulf of Mexico in 2016 
Comparison between the arithmetic ensemble mean (EM) 
with the nonlinear ensemble average using NNs. All plots 
represent the fifth forecast day for September 2nd, 2016. 

Applied simulation of NNs in the Gulf of Mexico.  

Hurricane Hermine: extreme winds up to 35 
m/s and waves up to 6 m high. Extreme 
winds of the EM dropped from 25 m/s to 10 
m/s (severe underestimation) while the NNs 
better capture the peak of the storms. 
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• NN improvement and 
required complexity (𝑘) are 
different over the variables 
(U10, Hs) and forecast 
ranges. 

 

• Despite different 
performances, all NN 
models provide better 
results than the 
deterministic forecast and 
the arithmetic ensemble 
mean (EM). 

 

 


