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1. Introduction

 Post-processing models for non-linear ensemble averaging are developed to reduce the Applied simulation of NNs in the Gulf of Mexico.
error of wave forecasts, especially at longer forecast ranges. EM: U10m 20160828 + 120 h NN:U10m 20160828 +120h _  Hyrricane Hermine: extreme winds up to 35
« 20 ensemble members plus a control member compose the NCEP k) Output layer 30°N 30°N [ e | m/s and waves up to 6 m high. Extreme

winds of the EM dropped from 25 m/s to 10
m/s (severe underestimation) while the NNs
better capture the peak of the storms.

Global Wave Ensemble System (GWES), forced by the Global . / \Vo

Ensemble Forecast System (GEFS) winds on WAVEWATCH III. : / :

 Neural network models (NNs) with different architectures are ' '
developed to reduce the GWES error by training the NNs using quality- < o
controlled observations from buoys and altimeters.

 Target variables are 10-m wind speed (U10) from GEFS and

significant wave height (Hs) from GWES.
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Figure 3: Practical implementation of the trained neural
networks applied to the Gulf of Mexico in 2016

Comparison between the arithmetic ensemble mean (EM)
80°W  with the nonlinear ensemble average using NNs. All plots
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Hidden layer [ T [ T :
d 0.0 4.0 8.0 120  16.0 0.0 4.0 8.0 120  16.0 represent the fifth forecast day for September 29, 2016.
m/s m/s

2. Neural Network Model EM: Hs 20160828 + 120 h NN: Hs 20160828 + 120 h

30°N 30°N

A conservative ensemble approach is currently used to calculate the arithmetic ensemble mean (EM)
for a variable p in GWES, where n is the number of ensemble members and p; is the i-th ensemble
member. It assumes a linear relationship between the EM and ensemble members 25°N
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However, in reality this relationship may be strongly nonlinear so a neural network model is proposed:

Time (forecast cycle)
N
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2 NEM = NN(p{,P3,*» Pn) 1 cwes : > m:'é.:'i'" - Third test, Global NNs, trained with one year (2017) of 2] -
CEFS — WAVEWATCH Il ; S8S altimeter data (JASONZ2, JASON3, SARAL, CRYOSAT2) 0 i
- The along-track data are collocated into the regular gridof | 1N
The combination of both methodologies (1 and 2) present better results, using the NN model to GWES (weighted average: maximum distance of 25 km and
simulate the non-linear part of the signal together with the model error, appended to the arithmetic time distance of 0.5 hours for each grid point [Lat/Lon/Time]). Time {forecast time)
EM. The target variable to simulate is the error signal, or residue, of the arithmetic mean compared to : . Figure 4: Schematic of time and forecast
observationsg:l v MUAte | 9 e P » Total count of 7,521,298 altimeter/ GWES matchups; cycle data selection (both in hours), for a

. For each matchup altimeter/GWES: matrix of 21 ensemble SPecific tme and - location of = the

, observation, centered at the satellite time
3 NEM = EM + NN,.(p1, D2, , Pv) i members per 41 forecast instants. (green dashed line).
i New batch of NN tests (780 NNs trained in high-performance computer; DT2,UMD):
Our work is divided in three steps: (residue) « 26 different number of neurons (2 to 500);10 seeds (initialization); and 3 equally-divided datasets.
» NNs applied to single locations (two buoys)

Main Goal: evaluate the capacity (and complexity) of a single MLP-NN model to improve the GWES
ensemble average for the whole globe and forecast ranges (0 to day-10).

GWES
WAVEWATCH I

» NNs in the Gulf of Mexico (six buoys) GEFS
> Global NNs trained with altimeter data
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] _ . _ _ _ _ 11 u1o Dav O oxns | UL0 Dav 5 - neurons, _for 3_ different forecast horlzon_s. The

A multilayer perceptron model (MLP-NN) with hyperbolic tangent as the activation function is | y y | dashed line is the average (over different

considered with backpropagation (gradient descent) training (Haykin, 1999); where p; is the input and fheeefgguﬁ?: l;grf?ersiraslentm%r? ?ct)r;N Q;Iz:c?r?dmg?earlz

v, the output, a and b are the NN weights, n and m are the numbers of inputs and outputs, and k is e e @i e T e EES ol

the number of nonlinear basis functions (hyperbolic tangents) M run and the arithmetic ensemble mean (EM).

k n 0 100 2dgeumn3séo 200 500 0 100 2é£eumn3sdo 400 500 0 100 2dgeumn35do 400 500 Figure 6: Results of NN tests in terms of the

0112_NRMSE: EM = 0.111/ Control = 0.115 NRMSE: EM = 0.201/ Control = 0.223 NRMSE: EM = 0.306/ Control =0.375  scatter error (y-axis) and systematic error (x-

NN(IH, P2, Pn; Q, b) = Yq = Qqo + Ay - tanh bjO + bji- pi|; 9q=1,2,..,m oan ] = _— axis). The left plot present the results (training
- - ol | HS Day 0 0.18501 Hs Day 5 Hs Day 10|| setin magenta and test set in green) compared

Jj=1 i=1 oia0ét 0.2861 to the control run (red square) and the

20108 - . The right plot is a

e e _ _ ~ 0.107 {4 - magnification of the clouds of NN results on the
Sensitivity tests were performed, modifying the number of neurons of the intermediate layer and test set, where the color indicates the number
excluding/including variables, applied to different NN architectures. =TT of neurons and the size of the dots indicates
. — 100 200 300 400 500 0 100 200 300 400 500 0 o 20 30 a0 w0 the normalized standard deviation of scatter

Input variables (total of 133): Neurons Newrons Neurens error throughout different forecastranges.

. Co_ntrol run plus 20 ensem b_Ie members of: 10-m W|r_1d mtensm_/ (91_0), S|gnlflcant_ wave . NN improvement and 0.25 —— . R — oasef —T T, - R
he_lght (Hs), peak wave |_oer|od (Tp), mean wave period (Tm), significant wave height of required complexity (k) are - | | W
wind-sea (WWsH), and period of wind-sea (Tws); different over the variables ~ °*| ' 400

« Latitude and longitude (sin/cos); (U10, Hs) and forecast szl | oxss| 350

: . : ranges. T p
« Time sin(27t/T) and cos(2nwt/T); and Forecast time (0 to 10 days). J o 3 % 0195 300
* Despite different £022 £ 250
Output variables: residue of U10 and Hs performances, all NN 2 Arithmetic Ensemble | g 0104 soi
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« NN model evaluation: Cross-validation with 3 cycles. One year (2017) of data divided in
training (2/3 of dataset) and test set (1/3). Further assessments of hybrid modeling results NBlas Hs. £
analyzing the scatter and systematic components of error (Mentaschi et al., 2013), and the — 4 w 22
multivariate distribution of it (Campos et al., 2018). &Y
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the NN ensemble averaging allowed an improvement on the 5-day forecast of: 64% in bias; 29% in iy SI_Hs, EM s SI_Hs, NN test
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Second test in the Gulf of Mexico with six buoys. Total of 105,600 NNs: ! A ' y | N
\
« 12 different numbers of neurons [2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 80, 200]; s ,‘g Y ¢ " ‘, L L .
38 different filtering windows to reduce noise [0, 24, 48, 96, 144, 192, 288, 480] hours; 60° e 6303 ‘! .“00 - A o | eocs o - oo T -
L — 3 : B g L — : g
e 100 seeds for random initialization; 010 015 020 025 030 035 040 010 015 020 025 030 035 040
e e B v" Small number of neurons are sufficient to reduce " Hs ooy NoONlinear ensemble averages using NNs are better than the arithmetic EM for the
- 0.561 the bias, while 35 to 50 neurons produce the o 71 whole globe and range of forecast, including U10 and Hs.
ALy greatest reduction In both the scatter and [ . =] « NN models with few neurons are able to reduce the systematic bias for short-range
- $2002955501 003 Hs FDay 10 systematic errors. 2 025 forecasts, while NNs with more neurons are required to minimize the scatter error
o ***** 0' i v’ Main advantage of NNs occurs at longer " oz0} at longer forecast ranges.
| il | forecast ranges beyond four days. | 015 60 to 150 neurons produce the best results for both the scatter systematic errors.
20°N 0541 v The NNs were able to improve the correlation e N -
. ; 0 100 10 200 coefficient on forecast day 10 from 0.39 to 0.61 O e menae " The RMSE of NN for forecast day 10 is similar to the EM of day8 and the control run of day®6.
Figure 19'5 VIiositig(jnwof NBE);C buoys (left); and RMg:r:; a function of for U10, and from 0.50 to 0.76 for Hs. -
the numb;er of neurons (right). | 4 CO“CIUSlO"S
3.5 | | | Fr:g‘tl;z 2(1; F:I?Sg'fts IJI’L S_gu'agfrgf - Multilayer perceptron neural networks are able to calculate nonlinear ensemble averages with lower
Ul0 | u Xico. : ” : )
0.7 metrics as a function of the systematic and scatter errors than the traditional arithmetic ensemble mean.
30l forecast range. * The novel method shows that one single NN model with 140 neurons is able to improve the error
0.6 Black curves are the ensemble metrics for the whole globe while covering all forecast ranges analyzed.
c g g g y
= - T members, « The RMSE of day-10 forecasts from the NN simulations indicated a gain of two days in predictability
i / P andl ¢ 02 cyan Is the controfrun, when compared to the arithmetic ensemble mean of GWES (EM).
S 4 i o red is the arithmetic mean of the : : : .. : : :
z | / 04 ensemble members  The time-consuming step is the NN training only. The operational calculation of the nonlinear
" sealici e “né s the ensemble averages takes a few seconds. Results of NN training consists of two matrices of weights
03 nonlinear ensemble average and two vectors of bias, and it is easily re-trained when necessary.
49 a using NNs. > Campos, R.M., Krasnopolsky, V., Alves, J.H.G.M, Penny, S.G., 2019. Nonlinear Wave Ensemble Averaging in the Gulf
5 o r . . s of Mexico using Neural Networks. Journal of Atmospheric and Oceanic Technology, _36, 113-127.
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