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Cross-Wave instability leads to flow reversal

Rotating Stokes drift
Small scale particle orbits drift slowly along 
a large scale, nested, closed trajectory

Experimentally measured 3D trajectory
(method: diffusive light imaging + PTV)

Order / disorder transition for varying wave phase

j=0 j=90oj=50o

Orbital particle drift

N. Francois, H. Xia, H. Punzmann, P.W. Fontana and M. Shats; Wave-based liquid-interface metamaterials, Nature Communications 7, 14325 (2017).

Wave number 
spectrum of r(k)

Exponential 
growth of r(kw)

Mean horizontal
kinetic energy E

velocity structure function:

j=0 j=p/2

j=p/4 w1=2w2

Nodal point particle orbit
Phase-controlled, orthogonal standing waves

elliptical plunger triangular pyramid square pyramidcylinder
Flow topology is defined by wave maker

measured 2D surface elevation 
of large amplitude, propagating wave field

3D printed, 
nonlinear wave model

mounted
Time averaged fluid streamlines.

Synthesized nonlinear wave model

top view

side  view

cylindrical
plunger

wave direction

particle

fluid experiments, top view

Flow pattern in planar waves

side  view

top view

fluid experiments, top view

Flow pattern in circular waves

Liquid-interface metamaterial offers deterministic particle control 
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Existence of coherent structures in Faraday-wave 2D turbulence

Rotor powered by 2D Faraday-wave turbulence
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Lagrangian structure of flow

Lf  ~ 4.4mm

20mm

Wave driven turbulence has an 
underlying flow fabric.

The flow is made of meandering 
bundles of fluid particles.

These bundles execute random 
walk collectively and their 
characteristic width is Lf.

Apparent homogeneous, isotropic Faraday wave 2D turbulence
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Shape of inertial particle affects its motion

disk surfer
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Coupling between translation/rotation
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Inertial Rectification mechanism: bending flow => reaction force Fp

Random Walk
mean squared displacement:
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Turbulent diffusion by varying the size
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Particle dispersion 
depends on particle size 
relative to the bundle width

5.45×10- 4 m2.s-2

Ellipsoids of different size move different

MSD – laboratory large ellipsoid small ellipsoid

Diffusion coefficient ratio Daa/Dbb
varies with particle size
with respect to the 
energy injection scale Lf

Diffusion is tunable

Rotational dynamics is diffusive
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