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Laboratory observations of wave group
evolution, including breaking effects
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The nonlinear evolution of deep-water wave groups, which are initiated by unstable
three-wave systems, have been observed in a large wave tank (50 m long, 4.2 m
wide, 2.1 m deep), equipped with a programmable, high-resolution wave generator. A
large number of experiments were conducted (over 80 cases) for waves 1.0–4.0 m long,
initial steepness ε = 0.10–0.28, and normalized sideband frequency differences, δω/εω,
0.2–1.4. Using an array of eight high-resolution wave wires distributed in range (up to
43 m fetch), spectral evolution was studied in detail including the effect of background
disturbances on the evolution. Minimizing those, new observations were made which
extend the pioneering work of Lake et al. (1977) and of Melville (1982). Foremost, near
recurrence without downshifting was observed without breaking, despite a significant
but reversible energy transfer to the lower sideband at peak modulation; complete
recurrence was prevented by the spreading of discretized energy to higher frequencies.
Strong breaking was found to increase the transfer of energy from the higher to the
lower sideband and to render that transfer irreversible. The end state of the evolution
following strong breaking is an effective downshifting of the spectral energy, where the
lower and the carrier wave amplitudes nearly coincide; the further evolution of this
almost two-wave system was not studied here. Breaking during strong modulation
was observed not only for the fastest growing initial condition, but over a wide
parameter range. An explanation of the sideband behaviour in both the breaking and
non-breaking case was given based on wave energy and momentum considerations,
including the separate effects of energy and momentum loss due to breaking, and
transfer to discretized higher frequencies throughout the spectra. Attention was drawn
to the latter, which was almost universally observed.

1. Introduction
Since Benjamin & Feir (1967) showed theoretically and experimentally that the

Stokes’ wave was unstable to modulational perturbations, a number of other exper-
imental investigations have been conducted on the long-time evolution of nonlinear
wave trains, see table 1. Certain findings have greatly contributed to advancing the
nonlinear science of deep-water gravity waves. The range of parameters and condi-
tions in the past experiments were however limited. Note that most of the experiments
were conducted for a range of steepness, but with a single fixed or naturally deter-
mined modulational frequency. Short waves (<1.0 m) were also typically used, since
the sideband evolution is a slow process with time scale inversely proportional to
the square of the steepness, and tank lengths were limited. The shortcoming of using

† Present address: The International Pacific Research Center, University of Hawaii, HI 96822,
USA.
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Figure 9. (a) Linear–linear plot of the spectral evolution with fetch in case of recurrence. λ = 1.0 m
(1.23 Hz), side band frequencies are 1.12 Hz and 1.34 Hz, initial carrier wave steepness is ε = 0.1,

δ̂ = 0.894, and the sideband steepnesses are b±/ac = 0.3535. Fetches are 3.6, 9.0, 14.4, 19.8, 25.2,
30.6, 36, and 41.4 m from bottom to top. Frequency resolution of the spectrum is 0.0122 Hz. (b)
Same as (a) but in log-linear scale showing the generation of high-frequency spectral peaks. (c)
Surface elevation time series showing the evolution of the modulational wave train experiencing a
recurrence phenomenon. The time coordinate was shifted in order to follow the same wave group.
The numbers 10 and 11 indicates the approximate number of waves per group.
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Modulation instability

INTRODUCTION

Implicitly or explicitly, the extraction of information from radar 
echoes is based on a physical model of the interaction between 
the radar system and the target, the study of which is sometimes 
referred to as radar phenomenology [1]. It follows that the de-
tail and fidelity of the physical model determine the prospective 
observables, the accuracy of measurement, and the fidelity of 
interpretation. Of course, there is little to be gained from em-
ploying a highly sophisticated model if the radar measurements 
have neither the dimensionality nor the dynamic range to sup-
port estimation of the parameters invoked. Contrariwise, there 
is much to be lost if valuable information encoded in the target 
echoes is overlooked because the signal analysis and interpreta-
tion procedures fail to undertake the corresponding decoding 
processes.

In the case of over-the-horizon (OTH) radars operating in 
the HF band, it is more often than not the case that sins of the 
latter type prevail. This should come as no surprise. The present 
generation of HF radars can call on technologies that dramati-
cally surpass those available in the 1970s and 1980s, when many 
of the best known OTH radars were designed and the associated 
interpretative models formulated [2]. These include processors 
with extraordinary speed and capacity, signal generators with ul-
tra-low phase noise, precise remote timing and synchronization, 
analog-to-digital converters able to digitize the entire HF band 
at the antenna outputs, yielding far in excess of 100 dB dynamic 
range, high-resolution colour displays and user interface tools, 
advanced signal processing algorithms, robust broadband wire-
less communications networks, detailed geographic information 
systems with a wide variety of overlay information, exotic new 
materials that can sidestep classical performance limits associ-
ated with the electromagnetics of conventional conductors and 
dielectrics, and powerful, versatile computational electromag-
netics codes. To give just two examples of the scale of the im-
provements, the data processing rate of the Australian Jindalee 
skywave radar near Alice Springs increased by 5 orders of mag-

nitude between 1978 and 2003, while the achievable subclutter 
visibility increased by a comparable factor by 2015.

To take full advantage of this symphony of technological ad-
vances, the radar system and its operators must be equipped with 
the means to detect, isolate, and interpret subtle features in the radar 
echoes. This requirement typically manifests itself as a family of 
coupled estimation or inverse problems. But, prior to any attempt 
to implement such a means, the phenomenology must be explored 
by building and experimenting with physical models that reveal 
the signatures of prospective observables and quantify the retriev-
able information. Of course, some performance metrics are direct 
beneficiaries of the improvements in dynamic range and computer 
speed, without refining the underlying physical models, but they 
are the exceptions.

The pursuit of higher fidelity in phenomenological models may 
serve several purposes:

i. to improve performance in existing radar missions by under-
standing the factors that limit performance and developing 
ameliorative procedures in design, processing, or operation

ii. to reduce vulnerability to hostile countermeasures of various 
types

iii. to establish new capabilities which draw on information hith-
erto inaccessible or ignored

iv. to honour the spirit of scientific inquiry

We illustrate each of these in later sections, but to make the point 
here, consider the following extract from a letter written some 
years ago by the Commanding Officer of a major Western OTH 
radar to the Chief Scientist of the civilian defense laboratory re-
sponsible for providing scientific support to his radar:

“… Notwithstanding, ship detection and track-
ing using the OTH radar remains a proven sci-
entific fact. Dr X from your laboratory routinely 
displays the unique capacity to not only detect, 
but also track, potentially any type of ship, un-
der almost all conceivable environmental con-
ditions - a feat which has not been equalled by 
any Air Force personnel, or indeed, other sci-
entists.”

The explanation? Dr X possessed an uncommon combination of 
expert knowledge in ionospheric physics, radiowave propaga-
tion, electromagnetic scattering, and oceanography, and had also 

Author's address: University of Adelaide, Physics, North Ter-
race, Adelaide, SA 5000, Australia. E-mail: (stuart.anderson@
adelaide.edu.au).
Manuscript received March 22, 2017, revised July 9, 2017, and 
ready for publication July 10, 2017.
Review handled by D. O'Hagan.
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recurrence, with energy being restored to the pri-
mary wave before the process repeats. Exactly this 
behaviour is evident in Figure 16, where the recur-
rence length is around 10–13 km, which compares 
well with the predicted range 8–18 km, under the 
prevailing conditions. Nevertheless, the recurrence 
interpretation must be treated with caution, though 
explanations such as atmospheric gravity waves 
and tidal interference patterns were shown not to 
be the cause. The other leading candidate explana-
tion – nonlinear effects in wave group evolution 
– is not entirely convincing, given the length and 
time scales involved. But irrespective of the precise 
mechanism, complex physics is generating a texture 
on the wave field, and our models need to recognize 
this.

One of the many advantages of the Hamilto-
nian formulation is that the numerical evaluation of 
these solutions, while still challenging, is far easier 
than the corresponding task for the standard Navier-
Stokes equation, being directly aided by the fact 
that, at any order, only a minority of terms contrib-
ute significantly, though even this statement needs 
to be read in the context of modelling of the role of 
nonresonant wave interactions, as explored by An-
nenkov and Shrira [18].

The discussion above deals with the case of a ho-
mogeneous fluid. In reality the ocean is a stratified 
medium with pronounced vertical profiles of tem-
perature and salinity. If we adopt the simple model 
of a two-layer fluid, the possibility of waves along 
the density interface or pycnocline emerges, and such 
waves, commonly referred to as internal waves, are 
prevalent in certain parts of the world's oceans. Once 
again, a Hamiltonian formulation describes the situ-
ation elegantly, and once again the dynamics can be 
established. HF radar signals do not penetrate to the 
pycnocline, but the coupling between the two layers, 
expressed in the Hamiltonian, predicts that the surface 
gravity waves sensed by HF radars will be modulated 
by the internal waves. And, sure enough, that is the 
case, as reported in [19] and illustrated in Figure 17.

TARGET CLASSIFICATION

We have seen how a more general model of the 
phenomenology reveals that the target return is 
distributed over the multidimensional analysis domain. For this 
reason there is some merit in adopting a more pragmatic defini-
tion.

Accordingly, we can define the generalised radar signature 
(GRS) of an object x with respect to a radar Q as [20]:

( )       
      

GRS x response of Q when x is present
response of Q when x is absent

=

−
 (9)

with the implied dependence on parameters representing the 
geometry and the propagation environment. When it comes to 
attempting to discriminate between targets on the basis of their 
GRS, the characteristics and configuration of the radar system 
inevitably enter the picture, along with the properties of the 
propagation paths. As the value of OTH information is greatly 
reduced in the absence of a target classification capability, these 
considerations can be of paramount importance, especially in 
the design of signal analysis and interpretation systems and in 

Figure 17.
Apparent signatures of internal wave packets generated by the strong M2 tidal flow onto 
the continental shelf in North West Australia. The colour scale indicates significant wave 
height. Both the spacing and the 2 dB increase in scattering coefficient of the striations are 
consistent with modelling results.

Figure 16.
Apparent radar signature of Fermi-Pasta-Ulam recurrence, observed in Gulf St Vincent 
when the wave field was highly directional. The solid line is a measure of the power spec-
tral density of a long gravity wave, based on the amplitude of its bound second harmonic. 
The dashed line indicates total received power, with the expected fall-off with range.
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iqx + qtt + 2|q|2q = iDq

1Scientific RepoRts | 6:28516 | DOI: 10.1038/srep28516

www.nature.com/scientificreports

Modulation Instability and 
Phase-Shifted Fermi-Pasta-Ulam 
Recurrence
O. Kimmoun1, H. C. Hsu2, H. Branger1, M. S. Li2, Y. Y. Chen2, C. Kharif1, M. Onorato3, 
E. J. R. Kelleher4, B. Kibler5, N. Akhmediev6 & A. Chabchoub7,8

Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected 
catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a 
distributed system is its response to a harmonic modulation. Such instability has special names in 
various branches of physics and is generally known as modulation instability (MI). The MI leads to a 
growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence 
since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately 
describe growth and decay of modulationally unstable waves in conservative systems. Here, we report 
theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super 
wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can 
describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range 
of new physics scenarios.

The discovery of the Fermi-Pasta-Ulam (FPU) recurrence was a significant step in nonlinear dynamics. It 
describes the natural return cycle of a dynamical system to its initial conditions after undergoing complex motion 
dynamics1,2. Meanwhile, the FPU recurrence has been studied and observed in several nonlinear media. For 
instance, in hydrodynamics within the framework of the Korteweg De Vries3 equations as well as in a more 
broad range in physics within the context of the nonlinear Schrödinger equation (NLSE)4,5, particularly, in the 
description of modulationally unstable periodic packets returning to the initial state of small perturbation of the 
background after significant envelope compression6,7.

In fact, the NLSE admits an analytic family of time-periodic solutions, referred to as Akhmediev breathers 
(ABs), which describe the dynamics of the modulation instability (MI) in time and space. ABs describe the MI 
starting from a regular background, significantly enhancing waves’ amplitudes during the envelope compression 
until reaching a specific saturation point and finally declining the envelope back to the regular state. The use 
of breathers such as ABs in the study of MI is very convenient from an experimental view point, since the MI 
becomes therefore initiated at any growth rate stage. Note that triggering the MI in the spectral domain, starting 
from small side-band amplitudes, may require a significant propagation distance and time for the observation of 
one compression cycle8,9.

However, when performing laboratory experiments deviation from expected AB trajectories in the phase 
space are expected, since medium properties are never perfectly described through the coefficients of the NLSE 
approximation. Indeed, these deviations, which are due to the medium’s properties and imperfect laboratory envi-
ronments, lead to the observation of recurrent MI growth-decay cycles. In fiber optics, experimental observations 
of the FPU recurrence within the framework of MI have been also restricted to only one whole cycle10,11. More 
recently, the effects of different perturbations to the standard NLSE such as third-order dispersion or varying 
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ABSTRACT

Modulation instability describes the exponential amplification
of a weak perturbation on top of a plane wave background and it
has been extensively studied in the context of weakly nonlinear
evolution equations such as the nonlinear Schrödinger equation
(NLSE). It has been further suggested as a possible generation
mechanism of rogue waves in the oceans. Here, we report on
an experimental laboratory study in which the modulation in-
stability dynamics have been seeded by random noise, added to
a Stokes wave. Similarly to experiments recently performed in
Optics, we show that the development of such spontaneous mod-
ulation instability in a water wave tank leads to the emergence of
highly localized structures that can be interpreted as analytical
NLSE breathers. Numerical simulations show very good qualita-
tive agreement with the laboratory experiments.

KEY WORDS: Spontaneous modulation instability, spontaneous
breathers, rogue waves

INTRODUCTION

One possible mechanism responsible for the emergence of oceanic
extreme waves is the modulation instability (MI) which describes
the exponential amplification of a periodic perturbation on top of
a Stokes wave as a result of four-wave interaction (Benjamin and
Feir, 1967, Tulin and Waseda, 1999, Kharif et al., 2009). In space,
MI leads to the formation of time-periodic localized waves with
large amplitudes while, in the spectral domain, MI is character-
ized by the emergence of symmetrical side-bands around the main
frequency peak of the Stokes wave. When seeded by a periodic
perturbation, MI can be described in terms of exact analytical
breather solutions of the nonlinear Schrödinger equation (NLSE)
(Akhmediev et al., 1985) and indeed time-periodic Akhmediev
breather solutions (ABs) have been deterministically observed in
recent laboratory experiments, both in hydrodynamics (Chab-
choub et al., 2014) and optical contexts (Dudley et al., 2009). A
particular case of interest is when the modulation period of such

breathers becomes infinite, leading to the so-called Peregrine soli-
ton (PS) (Peregrine, 1983, Kibler et al., 2010, Chabchoub et al.,
2011), the lowest-order analytical solution to the NLSE which
is fully localized both in space and time. Because the PS am-
plitude is the largest of all the breathers family (Dudley et al.,
2014, Chabchoub et al., 2016), corresponding to an amplification
of the Stokes wave by a factor of three, it has been considered to
be a prototype model to describe ocean rogue waves (Shrira and
Geogjaev, 2010). Furthermore, even though the NLSE model is
in principle only valid to describe the dynamics of narrow-banded
wave fields, it has been suggested that it may also be applicable
to a broader class of input conditions with breather-type waves
emerging under strong wind forcing (Chabchoub et al., 2013) or
in ocean JONSWAP spectrum configurations (Chabchoub, 2016).
The fact that analytical breather solutions can be observed in
controlled experiments under various input conditions has then
had a significant impact from a practical viewpoint and analyt-
ical breathers are nowadays for instance used as testbeds in ad-
vanced ocean engineering studies (Onorato et al., 2013, Klein
et al., 2016).

Modulation instability dynamics can be also seeded by ran-
dom noise present on top of a Stokes wave. Recent experiments in
Optics have shown that, in this case, the broadband nature of the
noise amplification process leads to the spontaneous emergence
of localized waves with random amplitudes (Toenger et al., 2015,
Agafontsev and Zakharov, 2015, Soto-Crespo et al., 2016) and
state-of-the-art measurements have confirmed that such sponta-
neous MI dynamics can be naturally interpreted as analytical
NLSE breathers (Suret et al., 2016, Närhi et al., 2016). In this
paper, we report on an experimental study of the evolution of
an initially perturbed Stokes wave in a large water wave facility.
By recording the wave field at several distances along the flume,
we show that the evolution dynamics are governed by sponta-
neous MI with the corresponding emergence of NLSE breathers.
In particular, we show that at locally the wave field amplitude
is well-fitted by analytical ABs and PS, similarly to the recent
findings in Optics (Suret et al., 2016, Närhi et al., 2016).
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ical breathers are nowadays for instance used as testbeds in ad-
vanced ocean engineering studies (Onorato et al., 2013, Klein
et al., 2016).

Modulation instability dynamics can be also seeded by ran-
dom noise present on top of a Stokes wave. Recent experiments in
Optics have shown that, in this case, the broadband nature of the
noise amplification process leads to the spontaneous emergence
of localized waves with random amplitudes (Toenger et al., 2015,
Agafontsev and Zakharov, 2015, Soto-Crespo et al., 2016) and
state-of-the-art measurements have confirmed that such sponta-
neous MI dynamics can be naturally interpreted as analytical
NLSE breathers (Suret et al., 2016, Närhi et al., 2016). In this
paper, we report on an experimental study of the evolution of
an initially perturbed Stokes wave in a large water wave facility.
By recording the wave field at several distances along the flume,
we show that the evolution dynamics are governed by sponta-
neous MI with the corresponding emergence of NLSE breathers.
In particular, we show that at locally the wave field amplitude
is well-fitted by analytical ABs and PS, similarly to the recent
findings in Optics (Suret et al., 2016, Närhi et al., 2016).
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Figure 3: The �rst column corresponds to the experimental data, the second to NLS equation in variable bathymetry and the

third to the comparison between the maximum and the minimum of the upper envelope of the wave train.

when they enter in the shallow water region. However the dissipation is important and part of the decrease
of the wave train is due to this e�ect. But this dissipation leads also to instabilities conducting to less
predictable behavior.
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Abstract: The formation mechanism of extreme waves in the coastal areas is still an open
contemporary problem in fluid mechanics and ocean engineering. Previous studies have shown that
the transition of water depth from a deeper to a shallower zone increases the occurrence probability
of large waves. Indeed, more efforts are required to improve the understanding of extreme wave
statistics variations in such conditions. To achieve this goal, large scale experiments of unidirectional
irregular waves propagating over a variable bottom profile considering different transition water
depths were performed. The validation of two highly nonlinear numerical models was performed
for one representative case. The collected data were examined and interpreted by using spectral
or bispectral analysis as well as statistical analysis. The higher probability of occurrence of large
waves was confirmed by the statistical distributions built from the measured free surface elevation
time series as well as by the local maximum values of skewness and kurtosis around the end of the
slope. Strong second-order nonlinear effects were highlighted as waves propagate into the shallower
region. A significant amount of wave energy was transmitted to low-frequency modes. Based on
the experimental data, we conclude that the formation of extreme waves is mainly related to the
second-order effect, which is also responsible for the generation of long waves. It is shown that
higher-order nonlinearities are negligible in these sets of experiments. Several existing models for
wave height distributions were compared and analysed. It appears that the generalised Boccotti’s
distribution can predict the exceedance of large wave heights with good confidence.

Keywords: coastal areas; extreme waves; statistical analysis; bispectral analysis; nonlinear wave models

1. Introduction

Extreme wave, also known as freak wave or rogue wave, refers in oceanography to large water
wave with crest-to-trough wave height H exceeding twice the significant wave height Hs in the wave
field, or with wave crest height ηc higher than 1.25Hs [1]. In a Gaussian sea state, wave heights H
follow a Rayleigh distribution when the wave field is assumed to be narrow-banded. In such cases,
large waves fulfilling the criteria H/Hs > 2 are not so unusual, occurring approximately once every
3000 waves. For instance, if the average wave period Tave = 15 s, it implies that the observer could
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longer in the experiment than in the simulations. On the other hand, both numerical schemes seem to
underestimate the group velocity as well as the amplitudes of large waves.

Figure 3. Comparison of the free surface elevation normalised by the local significant wave height at
different positions (panel (a)–(g)) between the simulated results of the Boussinesq-type model (blue
lines), whispers3D (red lines) and the measurements (black dot lines). Only the local relative water
depth over the uneven region is marked. The threshold of freak wave basing on crest elevation is
shown (dash lines).

4. Data Processing: Spectral Analysis

Assuming that the free surface elevation is the sum of a large (infinite) number of statistically
independent harmonic waves, each component having a random phase in [−π, π] and a constant
positive amplitude, we operated with a Gaussian sea state and the statistical characteristics can be
described through simple Fourier analysis. The spectral analysis was applied to both measured and
simulated results. The simulated signals were resampled (by means of interpolation) to have the
same sample points. A low-pass filter was applied to the measured signals to exclude the undesired
high-frequency band which might be contaminated by the electronic noise of the wave probes. The time
window where the analysis was carried out was translated for each wave gauge with the group velocity
Cg( fp), which ensured that all analysed signals recorded at different positions roughly started from
the same wave event. The spectra were estimated via Welch’s method. The overlapping factor was
50%, with which the signals were separated into a number of segments. First, the Hann window was
applied to each segment of signal (approximately 80 s), and then it was Fourier-transformed through
213-point fast Fourier transform (FFT), resulting in a high spectral resolution ∆ f = 0.0061 Hz.

In Figure 4, both the overall spatial evolution of the spectrum and the detailed spectra at four
specific positions are shown. It was observed that, as waves propagate over the deeper region, the wave
spectra are modulated mainly in the low-frequency range ( f < 0.2 Hz), and several low-frequency
modes are formed before the bottom slope. The low-frequency part is a result of the reflection of
unabsorbed long waves and the excitation of the natural modes of the wave flume. The wavemaker
and the damping zone only “absorb” a part of the reflected wave energy. Thus, these low-frequency
modes increase gradually during the test. Over the bottom slope, second-order effect gets increasingly
significant especially around the end of the slope (see the yellow peak at about 2 fp in Figure 4a for
x = 53.5 m and Figure 4b for the corresponding spectrum). After the slope segment, the increase of
the second harmonic disappears rapidly. More and more wave energy transfers to the low-frequency
part, and, as a result, the spectrum broadens. After some distance, due to the energy transfer the
low-frequency peak even exceeds the “original” spectral peak and becomes the “new” highest peak of
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Statistical parameters can also be computed based on the bispectrum. Skewness can be defined
as the normalised integral of the real part of the bispectrum [40]; the wave profile asymmetry w.r.t.
the vertical axis is related to the normalised integral of the imaginary part of the bispectrum [44]:

Skewbis =
∑ ∑< {B ( f1, f2)}

σ3 , (19)

Asymbis =
∑ ∑= {B ( f1, f2)}

σ4 . (20)

In Figure 10, the statistical parameters of the simulations as well as the measured results are
shown, and the two different computation methods of the skewness are also compared. It can be seen
that the two methods give very similar results; the small differences are probably due to the use of
Hann function window (even though a correction factor has already been considered) when computing
the Fourier coefficients. It can be seen that both the Boussinesq-type and whispers3D models have
good agreement over the two flat bottom regions, but clearly overestimate the maximum skewness
(triad wave–wave interaction) around the end of the slope. While the generated waves are almost
symmetric w.r.t. the horizontal axis, they become skewed as they propagate over the slope. Around
the end of the slope, the wave shape is highly asymmetric w.r.t. the horizontal axis, and the symmetry
is not fully recovered in the shallower flat bottom. Regarding the asymmetry parameter, the simulated
results agree well with the measured results. As can be seen, this parameter is almost zero except over
a short region after the slope which implies that the waves generated are almost symmetric w.r.t. the
vertical axis. It is also noted that the presence of the current bottom slope has limited effect on the
asymmetry parameter.

In Figure 11, the evolution of the kurtosis is shown. It fluctuates around 3 except for the area
around the end of the slope, where a local maximum value is observed. This corresponds to the location
of Probe 13. The numerical models predict well the overall evolution of kurtosis along the bottom
profile. However, they both overestimate the kurtosis around the end of the slope, and this trend
is more marked with whispers3D. This is probably because the breaking events in the experiments,
which are not considered in the simulations, limited the maximum wave heights. At the end of the
slope, the prediction of whispers3D is more non-Gaussian compared to that of the Boussinesq-type
model. According to previous studies (e.g., [23]), the local maximum of kurtosis indicates higher
probability of the occurrence of extreme waves. This motivates further investigations of wave height
statistics in similar, however, more complicated configurations.
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Figure 11. Comparison of the overall evolution of kurtosis between the measured and the simulation
results of the two numerical models.

7. Data Processing: Wave Height Distribution

The wave height distribution for the nonlinear shallow water waves has been of interest for
oceanographers, as it represents a key input for the design of coastal structures. The understanding of
the shallow water wave height distribution is, for the moment, limited not only due to the complexity of
coastal hydrodynamics but also due to the complex nearshore environment. The existing distributions
are either empirical/semi-empirical or analytical under strong assumptions. For this reason,
more experimental data are needed to study the applicability and validity of these models. In the
following, some of the most popular distributions are listed and compared with the measurements
and the results of the simulations.

7.1. Brief Review of Existing Distribution Models

7.1.1. Rayleigh Distribution

The study of wave height distribution in the early 1950s starts with the work of
Longuet-Higgins (1952) [45] for narrow-banded linear deep water waves. The wave heights (H)
follow the Rayleigh distribution, whose complementary cumulative distribution function (CCDF) is
given by:

PR(H) = exp

[
−
(

H√
2Hs

)2
]

. (21)

The wave conditions of the current Case 2 obviously violate the aforementioned assumptions.
The Rayleigh distribution is adopted here only for the purpose of comparison. Assume for the signals
with zero mean, the relation Hs ≈ 4σ is fulfilled throughout the domain, then the normalised wave
height H/σ = 8 is the threshold for the freak waves.

7.1.2. Glukhovskiy Distribution and Its Modifications (GV91 and GK96)

As waves propagate into coastal areas, the shoaling effect, as well as the depth-induced wave
breaking, are expected, which affect the shape of the distribution. Due to the insufficient understanding
of wave breaking and high-order non-Gaussian effects, only empirical or semi-empirical models
are available. A more general form of the Rayleigh distribution, namely the Weibull distribution,
is used to account for the depth-induced wave breaking in shallow water, as initially proposed by
Glukhovskiy [46]:

PG(H) = exp

[
−A

(
H
H∗

)K
]

, (22)
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longer in the experiment than in the simulations. On the other hand, both numerical schemes seem to
underestimate the group velocity as well as the amplitudes of large waves.

Figure 3. Comparison of the free surface elevation normalised by the local significant wave height at
different positions (panel (a)–(g)) between the simulated results of the Boussinesq-type model (blue
lines), whispers3D (red lines) and the measurements (black dot lines). Only the local relative water
depth over the uneven region is marked. The threshold of freak wave basing on crest elevation is
shown (dash lines).

4. Data Processing: Spectral Analysis

Assuming that the free surface elevation is the sum of a large (infinite) number of statistically
independent harmonic waves, each component having a random phase in [−π, π] and a constant
positive amplitude, we operated with a Gaussian sea state and the statistical characteristics can be
described through simple Fourier analysis. The spectral analysis was applied to both measured and
simulated results. The simulated signals were resampled (by means of interpolation) to have the
same sample points. A low-pass filter was applied to the measured signals to exclude the undesired
high-frequency band which might be contaminated by the electronic noise of the wave probes. The time
window where the analysis was carried out was translated for each wave gauge with the group velocity
Cg( fp), which ensured that all analysed signals recorded at different positions roughly started from
the same wave event. The spectra were estimated via Welch’s method. The overlapping factor was
50%, with which the signals were separated into a number of segments. First, the Hann window was
applied to each segment of signal (approximately 80 s), and then it was Fourier-transformed through
213-point fast Fourier transform (FFT), resulting in a high spectral resolution ∆ f = 0.0061 Hz.

In Figure 4, both the overall spatial evolution of the spectrum and the detailed spectra at four
specific positions are shown. It was observed that, as waves propagate over the deeper region, the wave
spectra are modulated mainly in the low-frequency range ( f < 0.2 Hz), and several low-frequency
modes are formed before the bottom slope. The low-frequency part is a result of the reflection of
unabsorbed long waves and the excitation of the natural modes of the wave flume. The wavemaker
and the damping zone only “absorb” a part of the reflected wave energy. Thus, these low-frequency
modes increase gradually during the test. Over the bottom slope, second-order effect gets increasingly
significant especially around the end of the slope (see the yellow peak at about 2 fp in Figure 4a for
x = 53.5 m and Figure 4b for the corresponding spectrum). After the slope segment, the increase of
the second harmonic disappears rapidly. More and more wave energy transfers to the low-frequency
part, and, as a result, the spectrum broadens. After some distance, due to the energy transfer the
low-frequency peak even exceeds the “original” spectral peak and becomes the “new” highest peak of
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Statistical parameters can also be computed based on the bispectrum. Skewness can be defined
as the normalised integral of the real part of the bispectrum [40]; the wave profile asymmetry w.r.t.
the vertical axis is related to the normalised integral of the imaginary part of the bispectrum [44]:

Skewbis =
∑ ∑< {B ( f1, f2)}

σ3 , (19)

Asymbis =
∑ ∑= {B ( f1, f2)}

σ4 . (20)

In Figure 10, the statistical parameters of the simulations as well as the measured results are
shown, and the two different computation methods of the skewness are also compared. It can be seen
that the two methods give very similar results; the small differences are probably due to the use of
Hann function window (even though a correction factor has already been considered) when computing
the Fourier coefficients. It can be seen that both the Boussinesq-type and whispers3D models have
good agreement over the two flat bottom regions, but clearly overestimate the maximum skewness
(triad wave–wave interaction) around the end of the slope. While the generated waves are almost
symmetric w.r.t. the horizontal axis, they become skewed as they propagate over the slope. Around
the end of the slope, the wave shape is highly asymmetric w.r.t. the horizontal axis, and the symmetry
is not fully recovered in the shallower flat bottom. Regarding the asymmetry parameter, the simulated
results agree well with the measured results. As can be seen, this parameter is almost zero except over
a short region after the slope which implies that the waves generated are almost symmetric w.r.t. the
vertical axis. It is also noted that the presence of the current bottom slope has limited effect on the
asymmetry parameter.

In Figure 11, the evolution of the kurtosis is shown. It fluctuates around 3 except for the area
around the end of the slope, where a local maximum value is observed. This corresponds to the location
of Probe 13. The numerical models predict well the overall evolution of kurtosis along the bottom
profile. However, they both overestimate the kurtosis around the end of the slope, and this trend
is more marked with whispers3D. This is probably because the breaking events in the experiments,
which are not considered in the simulations, limited the maximum wave heights. At the end of the
slope, the prediction of whispers3D is more non-Gaussian compared to that of the Boussinesq-type
model. According to previous studies (e.g., [23]), the local maximum of kurtosis indicates higher
probability of the occurrence of extreme waves. This motivates further investigations of wave height
statistics in similar, however, more complicated configurations.
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Figure 10. Overall evolution of the nonlinear statistical parameters, skewness and asymmetry,
computed from the time series (dash lines) and the bispectrum (solid lines).
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Figure 11. Comparison of the overall evolution of kurtosis between the measured and the simulation
results of the two numerical models.

7. Data Processing: Wave Height Distribution

The wave height distribution for the nonlinear shallow water waves has been of interest for
oceanographers, as it represents a key input for the design of coastal structures. The understanding of
the shallow water wave height distribution is, for the moment, limited not only due to the complexity of
coastal hydrodynamics but also due to the complex nearshore environment. The existing distributions
are either empirical/semi-empirical or analytical under strong assumptions. For this reason,
more experimental data are needed to study the applicability and validity of these models. In the
following, some of the most popular distributions are listed and compared with the measurements
and the results of the simulations.

7.1. Brief Review of Existing Distribution Models

7.1.1. Rayleigh Distribution

The study of wave height distribution in the early 1950s starts with the work of
Longuet-Higgins (1952) [45] for narrow-banded linear deep water waves. The wave heights (H)
follow the Rayleigh distribution, whose complementary cumulative distribution function (CCDF) is
given by:

PR(H) = exp

[
−
(

H√
2Hs

)2
]

. (21)

The wave conditions of the current Case 2 obviously violate the aforementioned assumptions.
The Rayleigh distribution is adopted here only for the purpose of comparison. Assume for the signals
with zero mean, the relation Hs ≈ 4σ is fulfilled throughout the domain, then the normalised wave
height H/σ = 8 is the threshold for the freak waves.

7.1.2. Glukhovskiy Distribution and Its Modifications (GV91 and GK96)

As waves propagate into coastal areas, the shoaling effect, as well as the depth-induced wave
breaking, are expected, which affect the shape of the distribution. Due to the insufficient understanding
of wave breaking and high-order non-Gaussian effects, only empirical or semi-empirical models
are available. A more general form of the Rayleigh distribution, namely the Weibull distribution,
is used to account for the depth-induced wave breaking in shallow water, as initially proposed by
Glukhovskiy [46]:

PG(H) = exp

[
−A

(
H
H∗

)K
]

, (22)
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longer in the experiment than in the simulations. On the other hand, both numerical schemes seem to
underestimate the group velocity as well as the amplitudes of large waves.

Figure 3. Comparison of the free surface elevation normalised by the local significant wave height at
different positions (panel (a)–(g)) between the simulated results of the Boussinesq-type model (blue
lines), whispers3D (red lines) and the measurements (black dot lines). Only the local relative water
depth over the uneven region is marked. The threshold of freak wave basing on crest elevation is
shown (dash lines).

4. Data Processing: Spectral Analysis

Assuming that the free surface elevation is the sum of a large (infinite) number of statistically
independent harmonic waves, each component having a random phase in [−π, π] and a constant
positive amplitude, we operated with a Gaussian sea state and the statistical characteristics can be
described through simple Fourier analysis. The spectral analysis was applied to both measured and
simulated results. The simulated signals were resampled (by means of interpolation) to have the
same sample points. A low-pass filter was applied to the measured signals to exclude the undesired
high-frequency band which might be contaminated by the electronic noise of the wave probes. The time
window where the analysis was carried out was translated for each wave gauge with the group velocity
Cg( fp), which ensured that all analysed signals recorded at different positions roughly started from
the same wave event. The spectra were estimated via Welch’s method. The overlapping factor was
50%, with which the signals were separated into a number of segments. First, the Hann window was
applied to each segment of signal (approximately 80 s), and then it was Fourier-transformed through
213-point fast Fourier transform (FFT), resulting in a high spectral resolution ∆ f = 0.0061 Hz.

In Figure 4, both the overall spatial evolution of the spectrum and the detailed spectra at four
specific positions are shown. It was observed that, as waves propagate over the deeper region, the wave
spectra are modulated mainly in the low-frequency range ( f < 0.2 Hz), and several low-frequency
modes are formed before the bottom slope. The low-frequency part is a result of the reflection of
unabsorbed long waves and the excitation of the natural modes of the wave flume. The wavemaker
and the damping zone only “absorb” a part of the reflected wave energy. Thus, these low-frequency
modes increase gradually during the test. Over the bottom slope, second-order effect gets increasingly
significant especially around the end of the slope (see the yellow peak at about 2 fp in Figure 4a for
x = 53.5 m and Figure 4b for the corresponding spectrum). After the slope segment, the increase of
the second harmonic disappears rapidly. More and more wave energy transfers to the low-frequency
part, and, as a result, the spectrum broadens. After some distance, due to the energy transfer the
low-frequency peak even exceeds the “original” spectral peak and becomes the “new” highest peak of
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Statistical parameters can also be computed based on the bispectrum. Skewness can be defined
as the normalised integral of the real part of the bispectrum [40]; the wave profile asymmetry w.r.t.
the vertical axis is related to the normalised integral of the imaginary part of the bispectrum [44]:

Skewbis =
∑ ∑< {B ( f1, f2)}

σ3 , (19)

Asymbis =
∑ ∑= {B ( f1, f2)}

σ4 . (20)

In Figure 10, the statistical parameters of the simulations as well as the measured results are
shown, and the two different computation methods of the skewness are also compared. It can be seen
that the two methods give very similar results; the small differences are probably due to the use of
Hann function window (even though a correction factor has already been considered) when computing
the Fourier coefficients. It can be seen that both the Boussinesq-type and whispers3D models have
good agreement over the two flat bottom regions, but clearly overestimate the maximum skewness
(triad wave–wave interaction) around the end of the slope. While the generated waves are almost
symmetric w.r.t. the horizontal axis, they become skewed as they propagate over the slope. Around
the end of the slope, the wave shape is highly asymmetric w.r.t. the horizontal axis, and the symmetry
is not fully recovered in the shallower flat bottom. Regarding the asymmetry parameter, the simulated
results agree well with the measured results. As can be seen, this parameter is almost zero except over
a short region after the slope which implies that the waves generated are almost symmetric w.r.t. the
vertical axis. It is also noted that the presence of the current bottom slope has limited effect on the
asymmetry parameter.

In Figure 11, the evolution of the kurtosis is shown. It fluctuates around 3 except for the area
around the end of the slope, where a local maximum value is observed. This corresponds to the location
of Probe 13. The numerical models predict well the overall evolution of kurtosis along the bottom
profile. However, they both overestimate the kurtosis around the end of the slope, and this trend
is more marked with whispers3D. This is probably because the breaking events in the experiments,
which are not considered in the simulations, limited the maximum wave heights. At the end of the
slope, the prediction of whispers3D is more non-Gaussian compared to that of the Boussinesq-type
model. According to previous studies (e.g., [23]), the local maximum of kurtosis indicates higher
probability of the occurrence of extreme waves. This motivates further investigations of wave height
statistics in similar, however, more complicated configurations.
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Figure 11. Comparison of the overall evolution of kurtosis between the measured and the simulation
results of the two numerical models.

7. Data Processing: Wave Height Distribution

The wave height distribution for the nonlinear shallow water waves has been of interest for
oceanographers, as it represents a key input for the design of coastal structures. The understanding of
the shallow water wave height distribution is, for the moment, limited not only due to the complexity of
coastal hydrodynamics but also due to the complex nearshore environment. The existing distributions
are either empirical/semi-empirical or analytical under strong assumptions. For this reason,
more experimental data are needed to study the applicability and validity of these models. In the
following, some of the most popular distributions are listed and compared with the measurements
and the results of the simulations.

7.1. Brief Review of Existing Distribution Models

7.1.1. Rayleigh Distribution

The study of wave height distribution in the early 1950s starts with the work of
Longuet-Higgins (1952) [45] for narrow-banded linear deep water waves. The wave heights (H)
follow the Rayleigh distribution, whose complementary cumulative distribution function (CCDF) is
given by:

PR(H) = exp

[
−
(

H√
2Hs

)2
]

. (21)

The wave conditions of the current Case 2 obviously violate the aforementioned assumptions.
The Rayleigh distribution is adopted here only for the purpose of comparison. Assume for the signals
with zero mean, the relation Hs ≈ 4σ is fulfilled throughout the domain, then the normalised wave
height H/σ = 8 is the threshold for the freak waves.

7.1.2. Glukhovskiy Distribution and Its Modifications (GV91 and GK96)

As waves propagate into coastal areas, the shoaling effect, as well as the depth-induced wave
breaking, are expected, which affect the shape of the distribution. Due to the insufficient understanding
of wave breaking and high-order non-Gaussian effects, only empirical or semi-empirical models
are available. A more general form of the Rayleigh distribution, namely the Weibull distribution,
is used to account for the depth-induced wave breaking in shallow water, as initially proposed by
Glukhovskiy [46]:

PG(H) = exp

[
−A

(
H
H∗

)K
]

, (22)
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Thank you! Questions?
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