

### Southern Ocean Wave Atlas

Tom Durrant<sup>1</sup>, Jorge Perez<sup>2</sup>, Peter McComb<sup>1</sup>, Henrique Rapizo<sup>2</sup>, Rafael Guedes<sup>1</sup>, Sally Garrett<sup>3</sup>

<sup>1</sup> Oceanum
 <sup>2</sup> Metocean Solutions
 <sup>3</sup> Defence Technology Agency

# Outline

- Background
- Observing program
- Modelling Experiments
- Wave Atlas

#### Southern Ocean Challenges for Navy Ships





The storm spectra

The best heading

Ship response in 6 degrees of freedom

### Southern Ocean Challenges for Navy Ships



#### Search & Rescue Region



- NZ SAR Region = 30M km<sup>2</sup>
- From South Pole north to Kiribati group
- From mid Tasman Sea east to Cook Islands
- 844 emergencies (EPIRBs and maydays) in NZ SAR area May 2011 – 2012





HMNZS Otago, May 2016

### Existing Information Inadequate



Hogben, ., N. (Neil), N. M. C. Dacunha, G. F. Olliver, and B. M. T. Ltd (1986), Global wave statistics, London, c1986

# Requirements for new ship design

- Establish an observation program
- Quantify wave climate
- Update existing joint probability Hs/Tp statistics
- Specify historical wave spectra

## Outline

- Background
- Observing program
- Modelling Experiments
- Wave Atlas

#### Existing Information Inadequate



# First Deployment

- Deployed 8th of February 2018
- Triaxys directional buoy
- Deployed from the HMS Otago
- 147m depth
- Transmitting full spectra at 3 hourly intervals





#### Lagrangian collection phase



- Buoy broke its mooring on 27th July 2017
- Continued to transmit data until August 2018
- Has not yet been recovered

### Second Deployment

- Deployed 2nd of March 2018
- Triaxys directional buoy
- Deployed from the HMS Wellington
- 147m depth
- Transmitting full spectra at 3 hourly intervals
- Commitment to service on an annual basis coinciding with NZDF conservations support in subantactic island group



#### Drifters



SCRIPPS miniature wave buoys



Spotters



### Buoy Validations against altimetry



P



ciwrb

sowrb

1

À

• •

6

 $Hs_{hs-sat}(m)$ 

N = 24

BIAS = -0.134 m

NBIAS = - 0.033

RMSD = 0.41 m

8

N = 47

BIAS = -0.282 m

NBIAS = - 0.079

RMSD = 0.419 m

10





### Large Waves



F.Barbariol, A.Benetazzo, L.Bertotti, L.Cavaleri, T.Durrant, P.McComb, M.Sclavo, Large waves and drifting buoys in the Southern - Ocean Engineering - 2019





Significant wave height E Peak wave period Maximum wave height



Largest recorded wave in the Southern Hemisphere

## Outline

- Background
- Observing program
- Modelling Experiments
- Wave Atlas



WAVEWATCH III, ST4, CFSR Forcing

#### Southern Ocean Currents

The Antarctic Circumpolar Current (ACC) is the largest ocean current (>100 Sv).

The ACC produces changes in the waves because of both refraction and reduction of relative wind speed



#### **Currents - Hindcast Results**





Henrique, R; Durrant, T; and Babanin, A - An assessment of the impact of surface currents on wave modeling in the Southern Ocean - Ocean Dynamics 2018

#### **Current Effects**

CFSR wind, ice and current forcing



 $-0.20 \hbox{-} 0.16 \hbox{-} 0.12 \hbox{-} 0.08 \hbox{-} 0.04 0.00 0.04 0.08 0.12 0.16 0.20$ 

Propagation effects only



 $-0.20 \hbox{-} 0.16 \hbox{-} 0.12 \hbox{-} 0.08 \hbox{-} 0.04 0.00 0.04 0.08 0.12 0.16 0.20$ 

Propagation and relative wind effects



- Comparison between ERA5 and CFSR as forcings
- Testing of different ice concentration thresholds
- Inclusion of icebergs
- Effect of ocean currents: CFSR, HYCOM, GLORYS

**Model Grids** 



- Global grid
  0.50x0.50 deg.
- Regional grid
  0.25x0.20 deg.
- Regional grid
  0.10x0.10 deg.

#### **ERA5 vs CFSR**

CFSR



72°

**ERA5** BETAMAX = 1.60 Bias [m] DOD N

#### Altimeter comparisons for the full year of 2012



0.0

0.2

0.4

-0.4

-0.2

18°

36°5

#### ERA5 vs CFSR



Monthly global statistics against altimetry

#### **Current source Sources**



Reanalysed current speed (m/s) at 97 m depth on 3 may 2003 in GLORYS2V1

#### CFSR - NOAA

- ½ degree spatial resolution (non eddy resolving)
- 6 hourly temporal resolution

#### HYCOM

- 1/12 degree spatial resolution (eddy resolving)
- 3 hourly/daily resolution

#### **GLORYS** - Mercator

- ¼ degree spatial resolution (eddy permitting)
- Daily

#### Changes with different ocean currents databases

#### **CFSR + Currents**

CFSR







-0.4 -0.2 0.0 0.2 0.4



Bias (m)

Scatter Index









HYCOM

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100



-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100



-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075



-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

#### Changes with different ocean currents databases

#### ERA5 + Currents

CFSR







0.0

0.2

0.4

-0.4

-0.2

Bias (m)

-0.050 -0.025 0.000 0.025 0.050 0.075 -0.100-0.075 0.100





HYCOM

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100



-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075



-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

Scatter Index





000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

### Outline

- Background
- Observing program
- Modelling Experiments
- Wave Atlas

#### Southern Ocean Wave Atlas

- WAVEWATCH III ST4
- Optimized configuration (ERA5 + icebergs +

GLORYS currents)

- Wave parameters at 0.25x0.20 deg. resolution
- 2D spectral data at 1 deg. resolution





0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.7

0.8

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.2

0.1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

#### Southern Ocean Wave Atlas

- Timeseries, tp/hs joint probablility statistics, rose plots etc available at metoceanview.com
- Contact us for spectra







#### Further work



• Glorys currents only cover up until 2017 which didn't cover the observations period - there is much more work that can be done with these observations - more work needed

#### Conclusions

- Increased availability of wave observations in the Southern Hemisphere.
- Significantly better wave results with ERA5 forcings than with CFSR forcings.
- Ocean currents have a positive effect, reduces Southern Ocean positive bias.
- GLORYS currents give better results than CFSR and HYCOM for ERA5 forced wave hindcasts

### **Ongoing Deployments**



Buoy loading onto the HMS Canterbury on 9th of November, 2019







Tom Durrant t.durrant@oceanum.science





